Founders : Muhammad Kamran Fizza Marium Motto : "We are saviour of nation."

https://wa.me/923134762530

https://www.facebook.com/groups/medicoshub

edicos Hub

https://www.instagram.com/medicos_hub_org

https://twitter.com/hub_medicos?s=08

medicoshub.org@gmail.com fizzamarium777@gmail.com

Copyright © 2020 by Medicos Hub

All rights reserved. No part of this publication maybe reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission from Medicos Hub.

All medical aspirants and medical students who want to join Medicos Hub Whatsapp Groups and Test Session Series filling and submitting Google Membership Form of Medicos Hub is must.

<u>Please note</u> : All are advised and warned to fill true and valid details, any wrong info will result in the disapprovement of membership form. Link is here :

https://forms.gle/Z86udzwGzAbw1Ud96

All enzymes are: Medicos Hub 1) A) Fibrous proteins C) Pure proteins B) Conjugated proteins D) Globular proteins $\bigcirc A$ ОВ $\bigcirc c$ $\bigcirc \mathbf{D}$ are detachable cofactors: Both and 2) A) Apo-enzyme, holoenzyme B) Activator, coenzyme C) Co-enzyme, prosthetic group D) Prosthetic group, activator ОВ $\bigcirc c$ $\bigcirc D$ $\bigcirc A$ Inorganic ions can play a role of in enzyme 3) catalysis: A) Coenzyme C) Apo enzyme B) Inhibitor D) Cofactor ○ B OC $\bigcirc D$ $\bigcirc A$ When apoenzyme is removed from enzyme the 4) is left? A) Enzyme C) Holoenzyme B) Co-enzyme D) Co-factor $\bigcirc A$ О В $\bigcirc c$ $\bigcirc D$ If non-protein part is covalently bonded to the protein 5) part of enzyme, it is called: A) Co-enzyme C) Activator B) Prosthetic group D) Co-factor 0 c О В $\bigcirc D$ $\bigcirc A$ Enzymes cannot work in: 6) A) Aqueous medium C) Acidic medium B) Dry medium D) Alkaline medium () C OB $\bigcirc D$ $\bigcirc A$ According to the induced fit model of enzyme action: 7) A) Enzyme induces changes in substrate structure B) Substrate induces changes in enzyme structure C) Active site of enzyme is a rigid structure D) Active site of enzyme is used as a template () A O B 0 C $\bigcirc D$ Enzyme works to its maximum capacity: 8) A) At high temperature C) At moderate temperature B) At low temperature D) At optimum Temperature **O C** A O О В $\bigcirc \mathbf{D}$ For most of the enzymes of human body, the optimum 9) temperature is: A) 37 C° C) 37 F° B) 35 C° D) 98.6 C° $\bigcirc \mathbf{A}$ ОВ 0 C $\bigcirc D$ Following substances can act as inhibitors, EXCEPT: 10) C) Antibodies A) Cyanide D) Poisons **B)** Antimetabolites ОВ $\bigcirc D$ $\bigcirc A$ O C 1

	A) One o B) Two C) One o D) Two	arbon and carbons and carbon and carbons ar	ers from m I two hydro Id one hydr I one hydro Id two hydr	alonic acid with respect to: gen atoms ogen atom gen atom rogen atoms	Medicos Hub				
(A (() В	⊖ c	○ D					
12)	The enz A) Pepsi B) Chyn	yme that in notrypsin	works best	at intermediate pH is: C) Sucrase D) Pancreatic lipase					
C	A	ОВ	⊖ с	O D					
13)	The con A) Enzy B) Cofa	npetitive i me	inhibitor co	C) Substrate					
C		ОВ	0 c) D					
14)	The rat A) Opti B) Opti	te of enzyn mum pH mum temj	me action v	vill be minimum at: C) Optimum conditions D) Maximum temperature					
(A	ОВ	0 c	OD					
15)	An enzy and in bind is A) Apoe B) Allos	me, that catalytic called: enzyme steric enzy	undergoes activity w me	reversible changes in shape when "Control" substances C) Holoenzyme D) Co-enzyme					
C	A	⊖ В	⊖ c	OD					
16)	Nicotina example A) Cofac B) Coen	mide ad of: ctor zyme	lenine di	nucleotide (NAD) is an C) Prosthetic group D) Nucleotide					
16)	Nicotina example A) Cofac B) Coen A	amide ac e of: ctor zyme O B	denine din O C	nucleotide (NAD) is an C) Prosthetic group D) Nucleotide D					
16) 17)	Nicotina example A) Cofae B) Coen A Which enzyme A) Actir B) Co-f	amide ac of: ctor zyme B one of th and subs vator actor	denine dir O C ne followin strate?	nucleotide (NAD) is an C) Prosthetic group D) Nucleotide D g acts as a bridge between C) Prosthetic group D) Ano-enzyme					
16)	Nicotina example A) Cofac B) Coen A Which enzyme A) Actir B) Co-fac A	amide ac e of: ctor zyme B one of th e and subs vator actor B	denine dir C c followin strate? C	nucleotide (NAD) is an C) Prosthetic group D) Nucleotide D g acts as a bridge between C) Prosthetic group D) Apo-enzyme D					
16) 17) 18)	Nicotina example A) Cofa B) Coen A Which enzyme A) Acti B) Co-f A Sometin energy, A) Co-f	amide ac e of: ctor zyme B one of th e and subs vator actor B nes, helping t actor	denine dir C c trate? C c provi o drive rea	nucleotide (NAD) is an C) Prosthetic group D) Nucleotide D g acts as a bridge between C) Prosthetic group D) Apo-enzyme D D des a source of chemical ction: C) Enzyme					
16) 17) 18)	Nicotina example A) Cofa B) Coen A Which enzyme A) Actir B) Co-f A Sometim energy, A) Co-f B) Co-e	amide ac e of: ctor zyme B one of th e and subs vator actor B nes, helping t actor nzyme B	denine dir C C c c c c c c c c c c	nucleotide (NAD) is an C) Prosthetic group D) Nucleotide D g acts as a bridge between C) Prosthetic group D) Apo-enzyme D D des a source of chemical ction: C) Enzyme D) Active site D					
16) (7) (8) (7) (18) (7) (19)	Nicotina example A) Cofa B) Coen A Which enzyme A) Actir B) Co-f A Sometin energy, A) Co-f B) Co-e D A	amide ac e of: ctor zyme B one of th e and subs vator actor B helping t actor nzyme B B	denine dir C c te followin strate? C provi o drive rea C c te raw mate	nucleotide (NAD) is an C) Prosthetic group D) Nucleotide D g acts as a bridge between C) Prosthetic group D) Apo-enzyme D Apo-enzyme D d des a source of chemical ction: C) Enzyme D) Active site D d erial for coenzymes: C) Vitamins D) Proteins					
16) 17) 18) (19)	Nicotina example A) Cofa B) Coen A Which enzyme A) Acti B) Co-f A Sometin energy, A) Co-f B) Co-e D A A A Nucc B) Lipi	amide ac e of: ctor zyme B one of th e and subs vator actor B helping t actor nzyme B form th leic acid ds B	denine dir C c c c c c c c c c c c c c	nucleotide (NAD) is an C) Prosthetic group D) Nucleotide D g acts as a bridge between C) Prosthetic group D) Apo-enzyme D) Apo-enzyme D b des a source of chemical ction: C) Enzyme D) Active site D b erial for coenzymes: C) Vitamins D) Proteins D b					
16) (17) (18) (19) (20)	Nicotina example A) Cofa B) Coen A Which enzyme A) Acti B) Co-f A Sometin energy, A) Co-f B) Co-e A A Nuc B) Lipi A Many A) Nuc B) Stree	amide ac e of: ctor zyme B one of th e and subs vator actor B nes, helping t actor nzyme B form th leic acid ds B enzymes : :leoplasm	denine dir C C te followin strate? C o drive rea C te raw mate C are simply oroplast	 nucleotide (NAD) is an C) Prosthetic group D) Nucleotide D g acts as a bridge between C) Prosthetic group D) Apo-enzyme D ides a source of chemical action: C) Enzyme D) Active site D erial for coenzymes: C) Vitamins D) Proteins D dissolved in the: C) Cytoplasm D) Matrix of mitochondria 					

	A) Activator B) Appenzyme		C) Holoenzyme D) Coenzyme	incurcos ne
\sim		\sim -		
0	АОВ	⊖ c	\bigcirc D	
)	Formation of ES	complex	activates the site of	
	Δ Δ Δ Δ		C) Catalytic	
	B) Binding		D) Allosteric	
\bigcirc	_,g	$\cap c$	\bigcirc D	
0	AUB	00	00	
23)	Optimum pH of a	ll human	() Acidia	
-	B) Same		D) Alkaline	
		0.0		
0	AOB	00		
(4)	At high substrate	level all	the active sites of enzyme are:	
/	A) Destroyed		D) Occupied	
	C) Available		D) Occupied	
\bigcirc	A OB	O c	OD	
5)	A chemical subst	ance whi	ch can react with enzyme, in	
-	place of substra	te, but c	cannot be transformed into	
	products is called	-	CLES	
	B) Inhibitor		D) Product	
	2,	\bigcirc c		
0	AUB	00	0 B	
	aan b	a chock	ad by increasing substrate	
26)	concentration:	еспеско	ed by increasing substrate	
	A) Reversible inh	ibition	C) Non-competitive inhib <mark>itio</mark> n	
	B) Irreversible inl	hibition	D) Competitive inhibition	
\bigcirc	АОВ	ΟC	OD	
Ŭ				
	The inhibitor havin	o structu	ral similarity with substrate is:	
	A) Irreversible inh	ibitors	C) Competitive inhibitor	
27)		oitors	D) Non-competitive inhibito	ors
27)	B) Reversible inhibit			
27)	B) Reversible inhibition $A \cap B$	0 C	OD	
(7)	B) Reversible inhi A OB	0 C	OD	
(7)	B) Reversible inhib A O B	O C	O D	
27)	B) Reversible inhib A O B Which one of the b	C C following	O D	
27)	B) Reversible inhib A O B Which one of the i pH as optimum p A) Sucrase	O C following H?	 D enzymes have slightly acidic C) Pepsin 	
27) 28)	B) Reversible inhib A B Which one of the inpH as optimum p. A) Sucrase B) Enterokinase	C C following	 D enzymes have slightly acidic C) Pepsin D) Catalase 	
27) 28)	B) Reversible inhib A B Which one of the inhib pH as optimum pin A) Sucrase B) Enterokinase A B	O C	 D enzymes have slightly acidic C) Pepsin D) Catalase D 	
27) 28)	B) Reversible inhib A B Which one of the inhib pH as optimum pin A) Sucrase B) Enterokinase A B	OC	 D enzymes have slightly acidic C) Pepsin D) Catalase D 	
27) (8)	B) Reversible inhib A B Which one of the inhib pH as optimum pin A) Sucrase B) Enterokinase A B But edding	OC	 D enzymes have slightly acidic C) Pepsin D) Catalase D 	
27) 28) 29)	B) Reversible inhib A B Which one of the inhib pH as optimum pinal A) Sucrase B) Enterokinase A B By adding pH of pancreatic	C following H? C C in neut lipase:	 D enzymes have slightly acidic C) Pepsin D) Catalase D D tral pH, we get the optimum 	
27) 28) 29)	B) Reversible inhil A B Which one of the inhibit pH as optimum pind A) Sucrase B) Enterokinase A B By adding pH of pancreatic A) 1	C following H? C C	 D enzymes have slightly acidic C) Pepsin D) Catalase D tral pH, we get the optimum C) 3 	
27) 28) 0 29)	B) Reversible inhib A B Which one of the inhib pH as optimum pinal A) Sucrase B) Enterokinase A B By adding pH of pancreatic A) 1 B) 2	OC following H? C C in neut lipase:	 D enzymes have slightly acidic C) Pepsin D) Catalase D tral pH, we get the optimum C) 3 D) 4 	
27) 28) 29)	B) Reversible inhib A B Which one of the inhib pH as optimum pinal A) Sucrase B) Enterokinase A B By adding pH of pancreatic A) 1 B) 2 A B	C following H? C C in neut lipase:	 D enzymes have slightly acidic C) Pepsin D) Catalase D tral pH, we get the optimum C) 3 D) 4 D 	
27) 28) 29)	B) Reversible inhib A B Which one of the p pH as optimum p. A) Sucrase B) Enterokinase A B By adding pH of pancreatic A) 1 B) 2 A B	C following H? C in neut lipase:	 D enzymes have slightly acidic C) Pepsin D) Catalase D d d d D 	
27) 28) 0 29)	B) Reversible inhib A B Which one of the inhib pH as optimum pinal A) Sucrase B) Enterokinase A B By adding pH of pancreatic A) 1 B) 2 A B Elavin adenine di	C following H? C in new lipase: C	 D enzymes have slightly acidic C) Pepsin D) Catalase D d	
27) 28) 29) 0 30)	B) Reversible inhil A B Which one of the pH as optimum p. A) Sucrase B) Enterokinase A B By adding pH of pancreatic A) 1 B) 2 A B Flavin adenine di A) Prosthetic grou	C following H? C c in neut lipase: C nucleotid	 D enzymes have slightly acidic C) Pepsin D) Catalase D d D tral pH, we get the optimum C) 3 D) 4 D le is a: C) Co-enzyme 	
27) 28) () 29) () 30)	B) Reversible inhib A B Which one of the inhib pH as optimum pible A) Sucrase B) Enterokinase A B By adding pH of pancreatic A) 1 B) 2 A B Flavin adenine di A) Prosthetic group B) Activator	C following H? C in neut lipase: C nucleotid p	 D enzymes have slightly acidic C) Pepsin D) Catalase D d D tral pH, we get the optimum C) 3 D) 4 D le is a: C) Co-enzyme D) Inhibitor 	
27) 28) 29) 30)	B) Reversible inhib A B Which one of the inhib pH as optimum pin A) Sucrase B) Enterokinase A B By adding pH of pancreatic A) 1 B) 2 A B Flavin adenine di A) Prosthetic group B) Activator A B	C following H? C in new lipase: C nucleotid p C	 D enzymes have slightly acidic C) Pepsin D) Catalase D <lid< li=""> d d <lid< li=""> d <lid< li=""> d<td></td></lid<></lid<></lid<>	

Evaporation of two ml out of one litre of water, lowers 31) the temperature of remaining 998 ml by: **Medicos Hub** A) 1 °C C) 3 °C B) 2°C D) 4 °C $\bigcirc \mathbf{D}$ $\bigcirc A$ ○ B 0 C **32)** The specific heat of vaporization of water is: A) 998 kcal/kg C) 574 kcal/kg B) 998 cal/kg D) 574 cal/kg 0 C О В $\bigcirc D$ $\bigcirc A$ Human tissues contain about twenty percent water in: 33) A) Bone cells C) Nerve cells B) Brain cells D) Muscle cells () A OB $\bigcirc c$ OD When temperature of one gram of water is raised by 34) one degree Celsius: A) One calorie heat energy is used B) One kilocalorie heat energy is used C) Two calorie heat energy is used D) Two kilocalorie heat energy is used OB OC 0 D $\bigcirc A$ Living beings use as a temperature stabilizer: 35) A) Water C) Proteins B) Lipids D) Carbohydrates OD $\bigcirc A$ ОВ $\bigcirc c$ Enzymes have no effect on: 36) A) Nature and properties of end products B) Nature and properties of reactants C) Speed of biochemical reaction D) Efficiency of biochemical reactions A О В O C $\bigcirc \mathbf{D}$ At low conc. of substrate the reaction rate is directly 37) proportional to the: A) Enzyme available C) Substrate available B) Product available D) Inhibitor available OB OC $\bigcirc D$ $\bigcirc A$ 38) Pick up the correct label of the site of graph indicated by '?' Reaction rate Temperature C⁰ A) Optimum temperature B) Denaturation of enzyme C) Normal curve for inorganic reactions D) Rate doubles for each increase in temperature

Competitive inhibitors are: 39) A) Reversible C) Smaller Medicos Hub B) Irreversible D) Larger $\bigcirc A$ O B 0 C $\bigcirc \mathbf{D}$ They alter the structure of the enzyme in such a way 40) that even if genuine substrate binds the active site, catalysis fails to take place temporarily: A) Irreversible inhibitors B) Reversible inhibitors C) Competitive inhibitors D) Non-competitive inhibitors OD $\bigcirc A$ O B 0 C Catalase and chymotrypsin have similar: 41) A) Substrate C) Optimum pH **B)** Product D) Metabolic impact OC $\bigcirc A$ () B $\bigcirc D$ A detachable cofactor having carbon and hydrogen 42) simultaneously is called: A) Coenzyme C) Prosthetic group B) Activator D) Apoenzyme **O** B 0 C $\bigcirc \mathbf{D}$ $\bigcirc A$ The rate of enzyme controlled reactions may increase: 43) A) With increasing temperature B) With increasing pH C) With decreasing temperature D) With decreasing pH $\bigcirc A$ О В $\bigcirc c$ $\bigcirc D$ Succinic acid dehydrogenase +Succinic acid and high 44) concentration of malonic acid→? C) No reaction A) Malic acid B) Fumaric acid D) Oxalic acid OB $\bigcirc c$ $\bigcirc A$ $\bigcirc D$ Potentially damaging enzymes are produced in: 45) A) Active form C) Abundant quantity B) Inactive form D) Minor quantity 0 C OD $\bigcirc A$ () B Which one is potentially damaging enzyme? 46) A) Pepsin C) Ptyalin B) Amylopsin D) Lipase $\bigcirc A$ **B** O C 7 OD 47) $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$ Deficiency of "E" will control the above pathway through: A) Feedback mechanism C) Positive feedback B) Feedback activation D) Feedback inhibition О В \bigcirc C $\bigcirc \mathbf{D}$ $\bigcirc A$ The detachable cofactor is known as: **48**) A) Prosthetic group C) Holoenzyme B) Apoenzyme D) Activator $\bigcirc A$ О В ○ C () D

Chymotrypsin works efficiently at: 51) Medicos Hub A) Acidic pH C) Minimum pH B) Alkaline pH D) Moderate pH О В $\bigcirc D$ $\bigcirc A$ $\bigcirc c$ 52) Efficiency of a biochemical reaction is increased by: A) Hormones C) Coenzymes B) Enzymes D) Cofactors **A** () () B 0 c $\bigcirc D$ _____ the ______activation _______ Enzymes the of 53) biochemical reactions: A) Lower C) Maintain B) Increase D) Multiply 0 C $\bigcirc D$ $\bigcirc A$ OB Both enzymes and coenzymes are: 54) A) Inorganic C) Derived from vitamins **B)** Reused D) Globular proteins $\bigcirc A$ $\bigcirc B$ $\bigcirc c$ $\bigcirc D$ 55) Enzymes associated with aerobic respiration are found in: A) Mitochondria C) Cytoplasm B) Chloroplast D) Ribosomes О В **C** $\bigcirc D$ $\bigcirc A$ 56) Active site of the enzyme is made up of two definite regions: C) Catalytic site B) Binding site D) Allosteric site ○ B $\bigcirc c$ $\bigcirc D$ **A** () According to lock and key model, there is no 57) modification in the active site: A) Before enzyme action B) After enzyme action C) During enzyme action D) Before, during and after enzyme action $\bigcirc B$ $\bigcirc A$ $\bigcirc c$ $\bigcirc D$ If substrate concentration is unlimited, rate of enzyme 58) action becomes: A) Inversely proportional to enzyme concentration B) Directly proportional to enzyme concentration C) Directly proportional to substrate concentration D) Inversely proportional to substrate concentration OB 0 C $\bigcirc A$ $\bigcirc \mathsf{D}$ **59)** Optimum pH for digestive enzymes of stomach is: A) Highly acidic C) Slightly acidic B) Highly alkaline D) Slightly alkaline $\bigcirc A$ $\bigcirc B$ $\bigcirc c$ $\bigcirc D$ Transformation of substrate into products is catalyzed by: **60**) A) Activated catalytic site C) Activated binding site B) Activated active site D) Activated allosteric site $\bigcirc A$ () B $\bigcirc c$ $\bigcirc D$

form an enzyme inhibitor complex 61) **Medicos Hub** at a point other than active site: A) Irreversible inhibitors C) Competitive inhibitors B) Reversible inhibitors D) Non-competitive inhibitors $\bigcirc c$ $\bigcirc D$ $\bigcirc A$ O B Pick up a product of succinic acid dehydrogenase: 62) A) Succinic acid C) Malonic acid B) Fumaric acid D) Malic acid $\bigcirc A$ $\bigcirc B$ 0 C $\bigcirc D$ The optimum pH value for arginase is than that 63) of pancreatic lipase: A) Highly greater C) Highly lesser B) Slightly greater D) Slightly lesser О В $\bigcirc c$ $\bigcirc D$ $\bigcirc A$ Malonic acid makes an enzyme-inhibitor complex with: 64) A) Hydrogenase enzyme C) Carboxylase enzyme B) Oxidase enzyme D) Dehydrogenase enzyme $\bigcirc B$ OC $\bigcirc A$ $\bigcirc D$ Following are the properties of enzymes, EXCEPT: 65) A) They are biological catalysts B) They initiate biochemical reactions C) They are highly efficient D) They are sensitive to changes in pH $\bigcirc A$ () B $\bigcirc c$ $\bigcirc D$ Some enzymes require for their 66) proper functioning: A) Optimum temperature C) Optimum pH B) Co factor D) Aqueous medium $\bigcirc A$ $\bigcirc B$ $\bigcirc c$ $\bigcirc D$ Which one of the following graphs shows the effect of 67) pH on the rate of reaction catalyzed by pepsin? A) C) tate of React ion-Reaction Rate of 2 PH 8 10 4 6 2 рн 8 10 4 ę Late of Reaction Lized React 100 B) 2 4 ę 8 10 2 4 ę 8 10 \bigcirc A ○ B ○ **C** $\bigcirc D$ Malonic acid competes for: **68)** A) Succinic acid C) Acetic acid B) Fumaric acid D) Dehydrogenase $\bigcirc \mathbf{B}$ $\bigcirc c$ $\bigcirc A$ $\bigcirc D$ 8

Zn²⁺ can play a role of _ in enzyme catalysis: **69)** C) Coenzyme A) Activator **Medicos Hub** B) Prosthetic group D) Apoenzyme $\bigcirc A$ ОВ $\bigcirc c$ $\bigcirc D$ An enzyme with its co-enzyme or prosthetic group, is 70) designated as: A) Apoenzyme C) Holoenzyme B) Coenzyme D) Co-factor) A OB OC $\bigcirc D$ The enzymes which are integral part of ribosomes are 71) involved in: A) Ribosome synthesis C) Lipid synthesis B) Protein synthesis D) Carbohydrate synthesis) A OB $\bigcirc c$ $\bigcirc D$ ES formation is facilitated by: 72) A) Active site C) Catalytic site B) Binding site D) Allosteric site) A OB 0 C $\bigcirc \mathbf{D}$ According to the Lock and Key model which one of the 73) following is a lock? A) Co-enzyme C) Substrate B) Enzyme D) Inhibitor) A ОВ ○ c OD the reaction rate is directly proportional 74) to the enzyme available: A) At high temperature C) At low conc. of substrate B) At low conc. of enzyme D) At high conc. of enzyme) A ○ B $\bigcirc c$ $\bigcirc D$ Enzyme is denatured when temperature is increased 75) beyond: A) Minimum range C) Optimum range B) Maximum range D) Moderate range) A $\bigcirc B$ $\bigcirc c$ OD If the inhibitor is , enzyme will be rendered 76) useless forever: A) Competitive C) Reversible B) Non-competitive D) Irreversible OC) A $\bigcirc B$ $\bigcirc D$ A competitive inhibitor competes with substrate for 77) same active site, but the competition is always won by that which is: A) Complementary to active site B) Complementary to enzyme C) More in concentration D) Larger in size) A O B $\bigcirc \mathbf{C}$ $\bigcirc D$ Succinate is converted into fumarate by losing two: 78) C) H₂O molecules A) Hydrogen atoms B) Carbon atoms D) Oxygen atoms 9 $\cap \mathbf{A}$ $\bigcirc \mathbf{B}$ $\bigcirc \mathbf{C}$ $\bigcirc \mathbf{D}$

Medicos Hub Bio Test #2 Key

Key

1.	D	17.	В	33.	A	49.	С	65.	B	81.	Α	97.	D
2.	В	18.	A	34.	A	50.	A	66.	В	82.	В	98.	D
3.	D	19.	С	35.	Α	51.	D	67.	D	83.	Α	99.	В
4.	D	20.	С	36.	A	52.	B	68.	D	84.	В	100.	В
5.	В	21.	C	37.	С	53.	Α	69.	A	85.	Α	101.	
6.	В	22.	С	38.	В	54.	В	70.	С	86.	В	102.	G
7.	В	23.	A	39.	Α	55.	Α	71.	В	87.	В	103.	5
8.	D	24.	D	40.	D	56.	Α	72.	В	88.	D	104.	2
9.	Α	25.	В	41.	С	57.	D	73.	В	89.	С	105.	
10.	С	26.	A	42.	Α	58.	В	74.	В	90.	Α	106.	
11.	A	27.	С	43.	Α	59.	A	75.	В	91.	D	107.	7
12.	B	28.	В	44.	C	60.	Α	76.	D	92.	С	108.	3
13.	C	29.	В	45.	В	61.	D	77.	С	93.	Α	109.	
14.	D	30.	C	46.	Α	62.	В	78.	A	94.	B	110.	
15.	В	31.	A	47.	В	63.	В	79.	В	95.	Α	111.	
16.	В	32.	С	48.	D	64.	D	80.	B	96.	D	112.	

Copyright © 2020 by Medicos Hub