

QUIZZES

Practice test 1 Unit 8

10 Questions

7 min

TopicsMagnetic field

Start Quiz

SAEED MDCAT SAEED MDCAT TEAM SAEEDMDCAT

1/10

7 min

Hint

Q: Two parallel beams of positrons moving in the same direction will

- A repel each other
- B not interact with each other
- attract each other
- be deflected normal to the plane containing the two beams

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

3

4

5

6

06:56 2/10 7 min Hint Q: The force that appears as a result of the interaction between two moving charges is called induced force electrostatic force magnetic force

SAEED MDCAT SAEED MDCAT TEAM SAEEDMDCAT SAEEDMDCAT

gravitational force

D

2 3 4 5 6 7

3/10

7 min

Hint

Q: The study of magnetism produced by electric current and electric current produced by changing magnetic field is called

- A magnetic field
- B electric current
- electric and magnetic field
- electromagnetism

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

3

4

5

6

7 min

Hint

Q: If a current flows through the wire directed out of the paper, the magnetic field is represented by

- A clockwise circular lines
- B anticlock wise circular lines
- lines parallel to the wire
- lines perpendicular to the wire

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

2

4

5

10

Hint

Q : The relationship between Tesla and smaller unit Gauss of magnetic induction is given by

- A $1T = 10^3 G$
- B 1T = 10⁻⁴ G
- $1T = 10^{-2} G$
- $D = 1T = 10^4 G$

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

3

4

5

6

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT SAEED MDCAT

1 2 3 4 5 6 7

7/10

7 min

Hint

Q: The direction at a point on the magnetic lines of force can be taken along:

- A normal at that point
- B the tangent at that point
- axis of the magnetic line of force at that point
- can't be taken

SAEED MDCAT SAEED MDCAT TEAM SAEEDMDCAT SAEEDMDCAT

2

3

4

5

6

06:39 8/10 7 min Hint Q: The force that appears as a result of the interaction between two moving charges is called induced force electrostatic force magnetic force gravitational force D

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

4 5 6 7 8 9 10

9/10

7 min

Hint

Q: The study of magnetism produced by electric current and electric current produced by changing magnetic field is called

- A magnetic field
- B electric current
- electric and magnetic field
- electromagnetism

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

4

5

6

7

8

9

10/10

7 min

Hint

Q: The direction of magnetic field due to current carrying conductor can be determined by

A

left hand rule

В

right hand rule

С

palm right hand rule

D

Fleming's left hand rule

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

4

5

6

7

8

9

QUIZZES

Practice test 2 Unit 8

10 Questions

7 min

Topics

Magnetic field, Magnetic Flux and Magnetic Flux

Density

Start Quiz

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

3

5

6

) (

SAEEDMDCAT

4/10

7 min

Hint

Q: The magnetic field in a certain region is given by $40\hat{i} - 18\hat{k}$. How much flux passes through a 5.0 cm² area loop in this region if loop lies flat in YZ plane?

- A
- $90 \times 10^{-4} \text{ Wb}$
- В
- $2 \times 10^{-2} \text{ Wb}$
- C
- $2 \times 10^{2} \text{ Wb}$
- D
- $9 \times 10^{-4} \text{ Wb}$

SAEED MDCAT
SAEED MDCAT TEAM
SAEEDMDCAT
SAEEDMDCAT

1

2

3

5

5/10

7 min

Hint

Q : For which of the following angles magnetic flux reduces to half of its maximum?

$$\theta = 45^{\circ}$$

$$\theta = 180^{\circ}$$

$$\theta = 0^{\circ}$$

$$\theta = 60^{\circ}$$

SAEED MDCAT SAEED MDCAT TEAM SAEEDMDCAT SAEEDMDCAT

6/10

7 min

Hint

Q: The relationship between Tesla and smaller unit Gauss of magnetic induction is given by

$$1T = 10^3 G$$

$$1T = 10^{-4} G$$

$$1T = 10^{-2} G$$

$$1T = 10^4 G$$

SAEED MDCAT SAEED MDCAT TEAM SAEEDMDCAT SAEEDMDCAT

SAEED MDCAT TEAM SAEEDMDCAT

8/10

7 min

Hint

Q: A conducting rod of 1 meter length and 1 kg mass is suspended by two vertical wires through its ends. An external magnetic field of 2 Tesla is applied normal to the rod. Now the current to be passed through the rod so as to make the tension in the wires zero is [take g = 10 ms-2]

0.5 Amp

15 Amp

5 Amp

1.5 Amp

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

(10

10/10

7 min

Hint

Q : Magnetic flux and flux density are related by

- A Magnetic flux = flux density / area
- B Magnetic flux = flux density x area
- Flux density = magnetic flux area
- Flux density = magnetic flux × area

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

4

5

6

7

8

9

Q: Magnetic flux would be maximum when

- \vec{B} is parallel to \vec{A}
- \overrightarrow{B} is at 45° to \overrightarrow{A}
- \vec{B} is perpendicular to \vec{A}
- none of these

SAEE Explanation DCAT

$$\phi_{max} = BA$$
 When $\cos\theta = 1 \rightarrow \theta = 0$

So, flux will be maximum when eta is parallel to eta

4/10

Q: The magnetic field in a certain region is given by $40\hat{i} - 18\hat{k}$. How much flux passes through a 5.0 cm² area loop in this region if loop lies flat in YZ plane?

- A $90 \times 10^{-4} \text{ Wb}$
- B 2×10^{-2} Wb
- 2 × 10² Wb
- $9 \times 10^{-4} \, \text{Wb}$

SAEE Explanation DCAT

SAEED MDCAT TEAM

$$A = (5\hat{i} + 0\hat{j} + 0\hat{k}) \times 10^{-4}m^2$$

 $B = 8$ **SAEEDMDCAT**
 $= 40 \times 5 \times 10^{-4}$

$$= 2 \times 10^{-2} Wb$$

Q : For which of the following angles magnetic flux reduces to half of its maximum?

$$\theta = 45^{\circ}$$

$$\theta = 180^{\circ}$$

$$\theta = 0^{\circ}$$

$$\theta = 60^{\circ}$$

SAEE Explanation CAT

$S\phi_b = BA\cos\theta MDCAT TEAM$ $\phi_b = (\phi_b)_{max}\cos\theta$

If
$$\theta = 60$$
° then EEDMDCAT
 $\phi_b = (\phi_b)_{\text{max}} \cos 60$ ° DMDCAT

$$\phi_b = \frac{1}{2} (\phi_b)_{\text{max}}$$

8/10

Q: A conducting rod of 1 meter length and 1 kg mass is suspended by two vertical wires through its ends. An external magnetic field of 2 Tesla is applied normal to the rod. Now the current to be passed through the rod so as to make the tension in the wires zero is [take g = 10 ms-2]

- A 0.5 Amp
- B 15 Amp
- c 5 Amp
- 1.5 Amp

SAEE Explanation DCAT

SAEED MDCAT TEAM

$$I = \frac{mg}{BL} = \frac{1x10}{1x2} = 5 \text{ Amp}$$

4

5

6

7

8

9

4 5 6 7 8 9 10

QUIZZES

Practice test 3 Unit 8

7 min

Topics

Force acting on a charged particle in a uniform magnetic field.

Start Quiz

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

7 min

Hint

Q: The velocity of a particle of charge $+4.0 \times 10^{-9}$ C and mass 2×10^{-4} kg is perpendicular to a 0.1-tesla magnetic field. If the particle's speed is 3×10^4 m/s, what is the acceleration of this particle due to the magnetic force?

- $0.0006 \, \text{m/s}^2$
- $0.006 \,\mathrm{m/s^2}$
- $0.06 \, \text{m/s}^2$
- $0.6 \, \text{m/s}^2$ D

SAEED MDCAT SAEED MDCAT TEAM SAEEDMDCAT

3/10

7 min

Hint

Q : An electron enters a region of uniform perpendicular \overrightarrow{E} and \overrightarrow{B} fields. It is observed that the velocity \overrightarrow{V} of the electron is undeflected. A possible explanation is:

- A vis parallel to Eand has magnitude E/B
- B vis parallel to
- is perpendicular to both \vec{E} and \vec{B} and has magnitude B/E
- \vec{V} is perpendicular to both \vec{E} and \vec{B} and has magnitude E/B

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

3

6

) (

4/10

7 min

Hint

Q: A proton (mass m and charge +e) and an α -particle (mass 4m and charge +2e) are projected with the same kinetic energy at right angles to the uniform magnetic field. Which one of the following statements will be true

- the α-particle and the proton will be bent in a circular path with the same radius
- the α-particle and the proton will go through the field in a straight line
- the α-particle will be bent in a circular path with a small radius that for the proton
- the radius of the path of the α-particle will be greater than that of the proton

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT SAEED MDCAT

1

2

3

4

5

6

06:48 6/10 7 min Hint Q: A proton enters a magnetic field of flux density 1.5 weber/m² with a velocity of 2×10⁷ m/sec at an angle of 30° with the field. The force on the proton will be $2.4 \times 10^{-12} N$ $0.24 \times 10^{-12} \text{N}$ 24×10⁻¹²N 0.024×10⁻¹²N SAEED MDCAT TEAM SAEEDMDCAT

7/10

7 min

Hint

Q:

A positively charged particle moving due east enters a region of uniform magnetic field directed vertically upwards. The particle will

- A Get deflected vertically upwards
- Move in a circular orbit with its speed increased
- Move in a circular orbit with its speed unchanged
- Continue to move due east

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT SAEED MDCAT

3

5

9/10

7 min

Hint

Q:

A homogeneous electric field E and a uniform magnetic field B are pointing in the same direction. A proton is projected with its velocity parallel to E. It will

- Go on moving in the same direction with increasing velocity
- Go on moving in the same direction with constant velocity
- Turn to its right
- Turn to its left

SAEED MDCAT SAEED MDCAT TEAM SAEEDMDCAT SAEEDMDCAT

7

8

10/10

7 min

Hint

Q:

An electron is travelling along the x-direction. It encounters a magnetic field in the y-direction. Its subsequent motion will be

- A Straight line along the x-direction
- A circle in the xz-plane
- C A circle in the yz-plane
- A circle in the xy<mark>-plan</mark>e

SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT TEAM

5

6

8

9

Q: The velocity of a particle of charge $+4.0 \times 10^{-9}$ C and mass 2×10^{-4} kg is perpendicular to a 0.1-tesla magnetic field. If the particle's speed is 3×10^4 m/s, what is the acceleration of this particle due to the magnetic force?

- A 0.0006 m/s²
- B 0.006 m/s²
- 0.06 m/s²
- 0.6 m/s^2

SAEE Explanation DCAT

SA/E-ED MDCAT TEAM

$$a = \frac{qvB}{m}$$

$$a = \frac{4 \times 10^{-9} \times 3 \times 10^{4} \times 0.1}{2 \times 10^{-4}}$$

$$DCAT$$

$$a = 6 \times 10^{-2} \text{ms}^{-2} = 0.06 \text{ms}^{-2}$$

Q: A proton (mass m and charge +e) and an α -particle (mass 4m and charge +2e) are projected with the same kinetic energy at right angles to the uniform magnetic field. Which one of the following statements will be true

- the α-particle and the proton will be bent in a circular path with the same radius
- the α-particle and the proton will go through the field in a straight line
- the α-particle will be bent in a circular path with a small radius that for the proton
- the radius of the path of the α-particle will be greater than that of the proton

SAEED ADCAT

SAEED MDCAT TEAM

$$r = \frac{\sqrt{2mk}}{qB} i.e. \quad r \propto \frac{\sqrt{m}}{q}$$
K land B are same

$$\therefore \frac{r_p}{r_a} = \frac{\sqrt{m_p}}{\sqrt{m_a}} \cdot \frac{q_a}{q_p} = \frac{\sqrt{m_p}}{\sqrt{4m_p}} \cdot \frac{2q_p}{q_p} = 1$$

1 2 3 4 5 6

4 5 6 7 8 9 10

Practice test 3 Unit 8

Q:

An electron is travelling along the x-direction. It encounters a magnetic field in the y-direction. Its subsequent motion will be

- A Straight line along the x-direction
- B A circle in the xz-plane
- A circle in the yz-plane
- A circle in the xy-plane

Explanation

AEED MDCAT

 $\overrightarrow{F} = -e(\overrightarrow{v} imes \overrightarrow{B}) \triangleright \overrightarrow{F} = -e[v \hat{i} imes B \hat{j}]$

i.e. Force on electron is acting towards negative zaxis. Hence particle will move on a circle in xz-

plane. $^{\it Z}$

Practice test 4 Unit 8

Topics
Path followed by charge particle magnetic field

Start Quiz

SAEED MDCAT SAEED MDCAT TEAM SAEEDMDCAT SAEEDMDCAT

SAEED MDCAT SAEED MDCAT TEAM SAEEDMDCAT SAEEDMDCAT

06:55 Q 2/10 7 min Hint Q: An electron accelerated through a potential difference V passes through a uniform transverse magnetic field and experience a force F. If the accelerating potential is increased to 2V, the electron in the same magnetic field will experience a force. F/2 $\sqrt{2}F$ 2F D SAEED MDCAT SAEED MDCAT TEAM

SAEEDMDCAT

06:52 3/10 7 min Hint Q: Two ions having masses in the ratio 1:1 and charges 1:2 are projected into uniform magnetic field perpendicular to field with speeds in the ratio 2:3 the ratio of the radii of circular parts along which the two particles move is 4:3 2:3 3:1 1:4 D SAEED MDCAT SAEED MDCAT TEAM SAEEDMDCAT

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT SAEED MDCAT

2 3 4 5 6 7

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

1 2 3 4 5 6 7

06:43

7/10

7 min

Hint

Q:

A strong magnetic field is applied on a stationary electron, then

- A
- The electron moves in the direction of the field
- The electron moves in an opposite direction
- The electron remains stationary
- The electron starts spinning

SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

3

4

5

6

06:40

8/10

7 min

Hint

Q:

An electron enters a magnetic field whose direction is perpendicular to the velocity of the electron. Then

- A The speed of the electron will increase
- B The speed of the electron will decrease
- The speed of the electron will remain the same
- The velocity of the electron will remain the same

SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

4

8

9

ΙU

06:38

9/10

7 min

Hint

Q:

When a magnetic field is applied in a direction perpendicular to the direction of cathode rays, then their

- A Energy decreases
- B Energy increases
- Momentum increases
- Momentum and energy remain unchanged

SAEED MDCAT SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT

4

5

6

7

8

9

10

06:36 10/10 7 min Hint Q: At a specific instant emission of radioactive compound is deflected in a magnetic field. The compound can emit Electrons (ii) Protons (i) He²⁺ (iii) (iv) Neutrons The emission at the instant can be i, ii, iii i, ii, iii, iv İ۷ ii, iii SAEED MDCAT TEAM SAEEDMDCAT

4 5 6 7 8 9 10

1 (2) 3 4 5 6

Practice test 4 Unit 8

accelerating potential is increased to 2V, the electron in the same magnetic field will experience a force.

- F
- F/2
- $\sqrt{2}F$
- 2F

Explanation

$$K.E. = \frac{1}{2}mv^2 = qV \Rightarrow v = \sqrt{\frac{2qV}{m}}$$

$$F = qvB = qB\sqrt{\frac{2qV}{m}}$$

So
$$F \propto \sqrt{V}$$

When the acceleration potential is increased to 2V then $F = \sqrt{2V}$ the ratio of force become

$$\Rightarrow \frac{F}{F} = \sqrt{\frac{2V}{V}} = \sqrt{2} \Rightarrow F' = \sqrt{2}F$$

Q: Two ions having masses in the ratio 1:1 and charges 1:2 are projected into uniform magnetic field perpendicular to field with speeds in the ratio 2:3 the ratio of the radii of circular parts along which the two particles move is

3/10

SAEE Explanation DCAT

SAS WE KNOW that MDCAT TEAM

$$\Rightarrow \frac{r_1}{r_2} = \frac{m_1}{m_2} \cdot \frac{v_1}{v_2} \left(\frac{q_2}{q_1}\right) = 1 \times \left(\frac{2}{3}\right) \left(\frac{2}{1}\right) = \frac{4}{3}$$

1 2 3 4 5 (6) 7

4 5 6 7 8 9 10

4 5 6 7 8 9 10