

Result Detail

Q: Units of power in terms of base units

- watt
- J/s
- kgm²s⁻³
- kgm^2s^{-2}

$$watt = \frac{J}{s} = \frac{N m}{s} = \frac{(kgms^{-2})m}{s} = k$$

Q: Units of power in terms of base units

- A watt
- B J/s
- c kgm²s⁻³
- kgm²s⁻²

$$\frac{J}{s} = \frac{N m}{s} = \frac{(kgms^{-2})m}{s} = kgm^2 s^{-3}$$

Q: Which of the following pairs have not the same units?

- Torque and angular momentum
- Young's modulus and pressure
- Torque and work
- Work and energy

Explanation

Torque =Fr = NmAngular momentum =mvr = kgm/s m = $kgm^2/s^2 s = Js$

Practice Test-1 (Measurement)

MDCAT 2020

Q: The unit of electric field is equivalent to

- NC^{-1}
- $JC^{-1}m^{-1}$
- Vm^{-1}
- D All of these

Explanation

$$E = \frac{-\Delta V}{\Delta r} = \frac{V}{m}, E = \frac{F}{q_o} = \frac{N}{C}$$

MDCAT 2020

- A NC⁻¹
- B JC⁻¹m⁻¹
- C Vm⁻¹
- All of these

$$E = \frac{-\Delta V}{\Delta r} = \frac{V}{m}, E = \frac{F}{q_o} = \frac{N}{C}$$

$$\Rightarrow$$
 Vm⁻¹ = $\frac{J}{C}$ m⁻¹ = JC⁻¹m⁻¹

Explanation

Parallactic second is unit of distance

Q: Unit of energy is

- Js
- В Jm
- kilowatt
- D watt.s

$$P = \frac{W}{t} = \frac{Energy}{time}$$
$$Energy = pt \Rightarrow J = W.S$$

O: Which one is not measured in units of energy?

$$\frac{1}{2} \operatorname{LI}^2$$

Explanation

I × t is not measured in units of energy because Ixt is charge not energy and all others can be measured in units of

energy?

- A Fd
- $\frac{1}{2}_{LI^2}$
- C I×t
- D QV

Explanation

I × t is not measured in units of energy because I×t is charge not energy and all others can be measured in units of energy.

Q: The different magnitudes of same physical quantities are measured by comparing them to.

- A available scale
- B standard size
- each other
- other physical quantities

Explanation

The different magnitudes of same physical quantities are measured by comparing them to standard size.

observations in the same experiment. By doing so the possible error becomes

- A 5 times greater
- B 1/5 times lesser
- 10 times greater
- 1/10 times lesser

Explanation

Possible error has decreased due to the increase in the number of observations.

Reduction in the possible error = $\frac{Error i}{Error}$

observations in the same experiment. By doing so the possible error becomes

- A 5 times greater
- B 1/5 times lesser
- 10 times greater
- 1/10 times lesser

Explanation

eased due to the of observations.

$$e \ error = \frac{Error \ in \ 100 \ observations}{Error \ in \ 500 \ observations} = \frac{1}{5}$$

Q : Repeating measurement several times and taking an average can reduce the effect of:

- systematic error
- В random error
- personal error
- all of these

Explanation

A remdy of random errror

Q: The density of a cube is measured by measuring its mass and the length of its side. If the maximum errors in the measurement of mass and length are 3% and 2%, respectively, then maximum error in the measurement of density is

1 %

5%

7%

D 9%

- A 1%
- B 5%
- C 7%
- D 9%

Explanation

$$\rho = \frac{m}{\ell^3}$$
; % age unc. of ρ =(% unc. of

Second method;

$$\frac{\Delta \rho}{\rho} = \frac{\Delta m}{m} + \frac{3\Delta \ell}{\ell} \Rightarrow \% \ unc. = \frac{\Delta \rho}{\rho} \times 10$$

- A 1%
- B 5%
- C 7%
- D 9%

s) +3(% unc. of
$$\ell$$
) =(3%) +3(2%) =9%

$$+3(2) = 9 \%$$

Q : Any measurement taken from an instrument will be more precise, if instrument has

- A large absolute uncertainty
- B small least count
- both a and b
- none of these

Explanation

An instrument will be more precise which have small least count and less absolute unertainty.

Q: The percentage uncertainty for V in relation of $V = 3.3 v \pm 0.1 V$

- 2%
- 4%
- С 3%
- 5%

$$V = \frac{\Delta V}{V} \times 100 = \frac{0.1}{3.3} \times 100$$

Q: The percentage errors in the measurement of mass and speed are 2% and 3% respectively. How much will be the maximum error in the estimation of the kinetic energy obtained by measuring mass and speed

A 11%

B 8%

C 5%

D 1%

MDCAT 2020 kinetic energy obtained by measuring mass and speed

A 11%

B 8%

C 5%

D 1%

Explanation

KE=1/2mv² \% Error in K.E. = % error in mass + 2 × % error in velocity = 2 + 2 × 3 = 8%

Q: A body travels uniformly a distance of (13.8 ± 0.2) m in a time (4.0 ± 0.3) s. The velocity of the body within error limits is

- $(3.45 \pm 0.2) \text{ ms}^{-1}$
- $(3.45 \pm 0.3) \text{ ms}^{-1}$
- $(3.45 \pm 0.4) \text{ ms}^{-1}$
- $(3.45 \pm 0.5) \text{ ms}^{-1}$

Explanation

Here, $S=(13.8\pm0.2)$ m

error, we have,
$$S=13.8\pm \frac{0}{13}$$

 $(3.45 \pm 0.2) \text{ ms}^{-1}$

 $(3.45 \pm 0.3) \text{ ms}^{-1}$

 $(3.45 \pm 0.4) \text{ ms}^{-1}$

 $(3.45 \pm 0.5) \text{ ms}^{-1}$

Explanation

Here, $S=(13.8\pm0.2)$ m

error, we have,
$$S=13.8\pm \frac{0}{13}$$

$$V = \frac{s}{t} = \frac{13.8 \pm 1.4}{4 \pm 7.5} = (3.45 \pm 0.45)$$

(3.45 \pm 0.2) ms⁻¹

B (3.45 ± 0.3) ms⁻¹

(3.45 ± 0.4) ms⁻¹

(3.45 ± 0.5) ms⁻¹

Explanation

 \pm 0.2)m and $t=(4.0\pm0.3)$ sec $=13.8\pmrac{0.2}{13.8} imes100$ and t=4

 $= (3.45 \pm 0.3) \ m/s.$

- (3.45 \pm 0.2) ms⁻¹
- B (3.45 ± 0.3) ms⁻¹
- (3.45 ± 0.4) ms⁻¹
- $(3.45 \pm 0.5) \text{ ms}^{-1}$

Explanation

3) sec Expressing it in percentage

$$t = 4.0 \pm \frac{0.3}{4} \times 100$$

Q: If the length of rod A is 3.25 ± 0.01 cm and that of B is 4.19 ± 0.01 cm then the rod B is longer than rod A by

- 0.94 ± 0.00 cm
- 0.94 ± 0.01 cm
- C 0.94 ± 0.02 cm
- 0.94 ± 0.005 cm

Explanation

Length of rod B - Length of rod A = 4.19 $-3.25 \pm 0.01 + 0.01 = 0.94 \pm 0.02$ cm

Q : Which of the following is not the unit of length

- A light year
- B angstrom
- c micro
- nm mm

Explanation

micro is a sub-multiple which is equal to 10^{-6} .

____MDCAT 2020.,__

Q : Electric charge in terms of base units are

A as

B a

C As

D s

Explanation

Q = It Coulmb = (ampere) (sec)

Q: QV^{-1} stands for

- A Electric flux
- B Electric pressure
- Electric field density
- Capacitance

Explanation

As capacitance is mathematical define as C = Q/V

MDCAT 2020

following equation? $F = 6\pi \eta rv = krv$ Where F = force, v = velocity and r = radius.

- A kgm⁻¹s⁻¹
- B kgms
- c kg⁻¹m²s
- kgm²s²

Explanation

$$F = kr_V$$

$$k = F/rv$$

 $k = N/m (.ms^{-1}) = kgm^{-1}s^{-1}$

Q : The radius of the sphere is (4.3+0.1) cm. The percentage error in its volume is

$$\frac{0.1}{4.3} \times 100$$

B
$$3 \times \frac{0.1 \times 100}{4.3}$$

$$\frac{1}{3} \times \frac{0.1 \times 100}{4.3}$$

Evolunation

B
$$3 \times \frac{0.1 \times 100}{4.3}$$

$$\frac{1}{3} \times \frac{0.1 \times 100}{4.3}$$

$$3 + \frac{0.1 \times 100}{4.3}$$

Explanation

$$V = \frac{4}{3}\pi r^3$$

$$\%V = \frac{4}{3}\pi(3r)$$

Q: The device which have more precision

- A High absolute uncertainty
- B More least count
- Maximum percentage uncertainty
- D Both A and B

Explanation

If instrument have more precision then its least count is high so it will have more least count and high absolute

Q: The device which have more precision

- A High absolute uncertainty
- B More least count
- Maximum percentage uncertainty
- Both A and B

Explanation

If instrument have more precision then its least count is high so it will have more least count and high absolute uncertainty (Least Count).

Q: The error in measurement of mass of sphere 1%, and error in measurement of radius 0.5%. The error in density is

1.5%

2.5%

3.5%

Explanation

$$\therefore \rho = \frac{m}{V_{ol}} = \frac{m}{\frac{4}{3} \pi r^3} \Rightarrow \% \text{ Error in } \rho = \% E_{loc}$$

MDCAT 2020

Q: The error in measurement of mass of sphere 1%, and error in measurement of radius 0.5%. The error in density is

B 1.5%

2.5%

D 3.5%

Explanation

Error in $\rho = \%$ Error in m + 3(% Error in r):

+

"Test Level-1 (Measurement)"

MDCAT 2020

Q: The error in measurement of mass of sphere 1%, and error in measurement of radius 0.5%. The error in density is

A 0.5%

B 1.5%

2.5%

D 3.5%

Explanation

 $3(\% Error in r) = 1 \% + 3\frac{1}{2} \% = \frac{5}{2} \% = 2.5 \%$

- A Power
- B Force
- Temperature
- Energy

Explanation

kWh is a unit of energy because we know

Energy = Power × time

In above formula, watt is the unit of power and hour is the unit of time and kilo is a prefix so kWh is unit of energy.

Q: The number of steradians in a sphere of radius r are:

$$\Box$$
 4 πr

Explanation

By definition:

$$(steradian)\Omega = \frac{S_{urface Area}}{r^2} = \Omega_{comp.} = \frac{41}{r}$$

Q: The number of steradians in a sphere of radius r are:

 $2\pi r$

 4π

 $4 \pi r$

Explanation

$$\frac{urface\ Area}{r^2} = \Omega_{comp.} = \frac{4\pi r^2}{r^2} = 4\pi\ steradian$$

Q : Name the quantity which can be measure by using base unit 'kg m^2 s⁻³":

- A Weight
- B Pressure
- Power
- Work

Explanation

$$P = \frac{W}{t} = \frac{J}{s} = \frac{Nm}{s} = \frac{kgm^2}{s^3}$$

Q : An observer notes reading of a scale from different angles (parallax) while measuring the length of wire, what kind of error can occur?

- A Systematic Error
- B Precised Error
- Zero Error
- Random Error

Explanation

An observer notes reading of a scale from different angles (parallax) while

measuring the length of wire, what kind of error can occur?

- A Systematic Error
- B Precised Error
- Zero Error
- Random Error

Explanation

An observer notes reading of a scale from different angles (parallax) while measuring the length of wire, that kind of error is called random Error

Q : A physical quantity is given by $X=M^aL^bT^c$. The percentage error in measurement of M,L and T are α,β and γ espectively. Then maximum percentage error in the quantity X is

- 🛕 αα+bβ+cγ
- В аα+bβ-сγ
- a/α+b/β+c/γ
- None of these

Explanation

Percentage error in X

X=IVI^L^ I ~. The percentage error in measurement of M,L and T are α,β and γ espectively. Then maximum percentage error in the quantity X is

- Α αα+bβ+cγ
- В аα+bβ-сγ
- a/α+b/β+c/γ
- None of these

Explanation

Percentage error in X $=a\alpha+b\beta+c\gamma$

Q: What is the correct sequence in which the lengths of the following units increase?

- 1. Angstrom
- 2. Micron
- 3. Nanometer

Select the correct answer using the code given below:

- A 1, 2, 3
- B 3, 1, 2
- 1, 3, 2
- D 2, 3, 1

соп*MDCAT 2020* пашетріва

Incorrect

2/30

Q: The velocity of a freely falling body varies according to relation $v = g^a \times h^b$, where g is the acceleration due to gravity and h is height from where it is released. The values of 'a' and 'b' are respectively

- 1, 1
- B $\frac{1}{2}, -\frac{1}{2}$
- $\frac{1}{2}, -\frac{1}{2}$
- $\frac{1}{2}, \frac{1}{2}$

Q : A circle is shown in the figure whose radius is 2cm. What must be the plane angle if arc length is equal to half of the

circumference of circle?

- A 2 rad
- $\frac{\pi}{2}$ rad
- C 2π rad
- D π rad

← Test Level 2 (Unit-1-Measurement... MDCAT 2020

Match List I (Physical quantity) with List II (Units) and select the correct answer using the codes given below the lists.

List I (Physical quantity)	List II (
(Units)		
A. Power	1. kg	
B. Energy	2. kg	
C. Momentum	3. N ₁	
D. Pressure	4. kW	
	5. kWł	

- A-4, B-5, C-1, D-3
- A-4, B-5, C-1, D-2
- A-5, B-4, C-1, D-2

← Test Level 2 (Unit-1-Measurement...

List I (Physical quantity) (Units)	List II (
A. Power	1. kg
B. Energy	2. kg
C. Momentum	3. N ₁
D. Pressure	4. kW
	5. kWł

- A-4, B-5, C-1, D-3
- A-4, B-5, C-1, D-2
- A-5, B-4, C-1, D-2
- D A-5, B-4, C-2, D-3

Test Level 2 (Unit-1-Measurement...

MDCAT 2020 -

		1.100101			
S	given	bel	ow	the	lists.

(Physical quantity)	List II (Physical
)	
ver	1. $\log ms^{-1}$
rgy	2. $\log m^2 s^{-1}$
mentum	3. Nm^{-2}
ssure	4. kW
	5. kWh

- A-4, B-5, C-1, D-3
- B A-4, B-5, C-1, D-2
- A-5, B-4, C-1, D-2
- D A-5, B-4, C-2, D-3
- 1 2 3 4 5 6 7

- Q: The unit of percentage error is
- Same as that of physical quantity
- Different from that of physical quantity
- Percentage error is unit less
- Errors have got their own units which are different from that of physical quantity measured

Test Level 2 (Unit-1-Measurement...

.....MDCAT 2020-,...

Q: What is the correct sequence in which the lengths of the following units increase?

- 1. Angstrom
- 2. Micron
- 3. Nanometer

Select the correct answer using the code given below:

- A 1, 2, 3
- B 3, 1, 2
- 1, 3, 2
- D 2, 3, 1

- Correct Unattempted
- Incorrect Q 11/30

Q: Which of the following quantities has not been expressed in the proper units?

- A Young's modulus = Nm⁻²
- Pressure = Nm⁻²
- Surface tension = Nm⁻¹
- Spring constant = $kg m^{-1}s^{-1}$

kilo, milli, pico

- Correct Unattempted
- Incorrect Q 14/30

Q : In given equation v=at²+bt, t is the time and v is the velocity the unit of a and b respectively

- $^{-2}$ ms 3 and ms $^{-2}$
- $^{\odot}$ ms⁻³ and ms⁻²
- ms³ and ms²
- $^{-3}$ and ms

Q : What is the answer of $\frac{milli \times kilo}{deca}$

- A 10²
- B 10⁻¹
- C 10⁻³
- D 10⁷

- Q: Plane angle and solid angle are
- A Primary fundamental units
- B Secondary fundamental unit
- Supplementary quantities
- Derived units

23 24 25 26 27 28 2

Q: If $\frac{a}{b}$ the maximum % age error in measurement of y will be

$$\frac{\Delta a}{a} + \frac{\Delta b}{b} 100$$

$$\left(\frac{\Delta a}{a} \times \frac{\Delta b}{b} \right) 100$$

$$\frac{\Delta a/a}{\Delta b/b} \times 100$$

26

Both A and B

