WORKSHEET-17

Worksheet-17

(A. Physical Chemistry) Chemical Equilibrium

- A) It can proceed in both directions
- B) In it the whole amount of reactant does not change into product
- C) Chemical equilibrium can establish in it
- D) It is applicable to stoichiometric calculation

Q.2 Chemical equilibrium is not associated with:

- A) It is macroscopic property
- B) At equilibrium the amount of reactant = the amount of product
- C) It is established in closed system
- D) It can establish from either side of reactant or product

Q.3 If the reaction $A + B \rightarrow AB$. If concentration of A and B are doubled, the rate of reaction will:

- A) Increase two times
- B) Decrease to one half
- C) Increase four times
- D) Decrease to one

Q.4 Which one of the following factors can change the value of Kc?

- A) Temperature
- B) Pressure
- C) Concentration of reactants
- D) Concentration of products

Q.5 Which of the following principle / rule is applicable at equilibrium?

- A) Law of mass action
- B) Pauli's Exclusion Principle
- C) Le-Chatelier's Principle
- D) Hund's Rule
- Q.6 In which of the following reactions decrease or increase in pressure has no effect in the change of direction of reaction?

A) $N_2 + O_2 \rightleftharpoons 2NO$ B) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ C) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ D) $2SO_2 + O_2 \rightleftharpoons 2SO_3$

Your STEP Towards A Brighter Future!

USE THIS SPACE FOR SCRATCH WORK

Q.7	In which of the following unit?	reactions, K _c value has no	<u>USE THIS SPACE FOR</u> <u>SCRATCH WORK</u>
	A) $H_2 + I_2 \rightleftharpoons 2HI$	C) N ₂ + 3H ₂ \implies 2NH ₃	
	B) PCl ₅ \Longrightarrow PCl ₃ + Cl ₂	D) $2SO_2 + O_2 \rightleftharpoons 2SO_3$	
Q.8	Consider the following rea the unit of K _c is:	ction $2SO_2 + O_2 \xrightarrow{V_2O_5} 2SO_3$	
	A) mol dm ⁻³	C) dm ³ mol ⁻¹	
	B) dm^3mol^{-2}	D) dm^6mol^{-2}	
Q.9	In which of the followin equilibrium is established?	g reactions, heterogeneous	
	A) $H_2 + I_2 \rightleftharpoons 2HI$	C) N ₂ + 3H ₂ \implies 2NH ₃	
	B) PCl ₅ \Longrightarrow PCl ₃ + Cl ₂	D) MgCO ₃ \implies MgO+CO ₂	
Q.10	Which one of the following a reaction for which th independent of temperatur	g statements is correct about ne equilibrium constant is re?	2
	A) The activation energies reactions are zero	for both forward and reverse	
	B) The enthalpy change is z	ero	
	C) Its rate constants do not v	vary with temperature	
	D) There are equal number products in it	r of moles of reactants and	
Q.11	Which of the following is the	he strongest acid?	
	A) HI	C) HClO ₃	
	B) HNO ₃	D) H_2SO_4	
Q.12	Which one of the followin strongest bases?	g groups of elements forms	
	A) IVA	C) IIA	
	B) IIIA	D) IA	
Q.13	Which one of the following	statements is incorrect?	
	A) Strong acid has greater co	oncentration of hydrogen ions	
	B) Strong acid has low pH v	alue	
	C) Greater is pK _a value, stro	nger is the acid	
	D) Smaller is concentration of	of OH ⁻ ions weaker is the base	
Q.14	Which of the following is n	ot buffer solution?	
	A) CH ₃ COOH + CH ₃ COON	aC) HCl + NaCl	
	B) $H_2CO_3 + NaHCO_3$	D) $H_3PO_4 + Na_2HPO_4$	

Your STEP Towards A Brighter Future!

Q.15	If Ka value is 1	0 ⁻⁶ then Kb valı	ue is:		USE THIS SPACE FOR
	A) 10 ⁻⁴	C) 10-6		<u>SCRATCH WORK</u>
	B) 10 ⁻⁸	D) 10 ⁻¹⁰		
Q.16	Which one of tKc?	the following s	tatements is	incorrect for	
	A) It may or ma	y not have unit			
	B) It depends on	n equilibrium co	ncentration		
	C) It is associate	ed with ΔH			
	D) It tells us abo	out rate of reacti	on		
Q.17	All of the fol solubility produ	lowing are ch uct EXCEPT?	naracteristic	features of	
	A) If solubility i	s known, then K	K _{sp} can be cale	culated	
	B) If K _{sp} is know	vn, then solubili	ity can be cale	culated	
	C) It is application greater than	ble if the molar 0.1M	r concentratio	on of ions is	
	D) The term K _{sp}	is related with	reversible pro	ocess	
Q.18	Which one of the the effect of a c	he following sta atalyst?	atements is c	orrect about	
	A) It increases reaction	the equilibrium	constant for	the forward	
	B) It increases the not that of the	le rate constant f le reverse reaction	for the forward on	d reaction but	
	C) It increases the	he yield of produ	uct at equilibr	rium	
	D) It provides an	n alternative rou	te for a reacti	ion	
Q.19	Water dissociat	tes as shown:			
		$H_2O(g) \rightleftharpoons I$	I⁺ + OH⁻		
	At 25°C the eq	uilibrium value	e of [H ⁺] is 1	0 ⁻⁷ mol dm ⁻³ ,	
	$[H_2O] = \frac{1000}{18} m$	ol dm ⁻³ . What	is the order	of increasing	
	numerical valu at this tempera	e of pH, _p K _a and ture? [pKw=	l _p Kw for this -logKw]	equilibrium	
	Options	Smallest	Larger	Largest	
	A)	pН	pKa	pKw	
	B)	pН	pKw	pKa	
	C)	pKa	pKw	pН	
	D)	pKw	pKa	pН	1

Q.24 The equilibrium constant for the reaction between acetic acid and ethyl alcohol is 4.0. A mixture of 2.0 moles of acetic acid and 2.0 moles of C₂H₅OH is allowed to come to equilibrium. Calculate the number of moles of ethyl acetate at equilibrium

 $C_{2}H_{5}OH + CH_{3}COOH \longleftrightarrow CH_{3}COOC_{2}H_{5} + H_{2}O$

- A) 1.5 moles C) 1.6 moles
- B) 1.3 moles D) 1.4 moles

Q.25 Given that pKa of acetic acid is 4.7, what is pH of solution of 0.01 M acetic acid and 0.1 sodium acetate is: A) 3.7 C) 4.7

11) 5.7	c) !!!
B) 5.7	D) 2.7

Q.26 The Le-Chatlier principle states that if a stress is applied to a system at equilibrium, the system acts in such a way so as to nullify as far as possible, the effect of that stress. Which of the following effect of change is not according to this principle:

Opt.	Change at equilibrium	Effect of change
A)	Increase in concentration of reactant	Reaction moves in the forward direction
B)	Increase in pressure	Reaction moves in that direction which has less number of moles
C)	Increase in temperature	Reaction always moves in the exothermic side
D)	Increase in the concentration of the product	Reaction moves in the reverse direction

Q.27 Different relationship between K_c and K_p are given:

Cond.	Case	Example	Conclusion
Ι	If $\Delta n = 0$	$H_2 + I_2 \rightleftharpoons 2HI$	$\mathbf{K}_{\mathbf{p}} = \mathbf{K}_{\mathbf{c}}$
	$(\mathbf{n}_p = \mathbf{n}_r)$		
II	If $\Delta n = +ve$	$PCl_5 \rightleftharpoons PCl_3 + Cl_2$	$K_p > K_c$
	$(n_p > n_r)$		
III	If $\Delta n = -ve$	$N_2 + 3H_2 \rightleftharpoons 2NH_3$	$K_p < K_c$
	$(n_p < n_r)$		

Which of the following relationship between K_c and K_p is/are correct?

A) I only	C) III only
B) II only	D) I, II, III

Q.28 pH of an aqueous solution is 10.0 Its pOH is:

C) 4 D) 10

Q.29 Mark the correct statement:

A) 7

B) 9

A) Greater is the Ka value, stronger is the acid

B) Greater is pH value, stronger is the acid

C) Greater is pKa value, stronger is the acid

D) Smaller is H⁺ ion concentration, stronger is the acid

USE THIS SPACE FOR SCRATCH WORK

Q.30	The phenom a salt with alkalinity is following sal	enon of interaction o water in order to known as salt hyd lts is not hydrolyzed?	f cations and anions of produce acidity or rolysis. Which of the	<u>USE THIS SPACE FOR</u> <u>SCRATCH WORK</u>
	A) CuSO ₄	C) N	a_2SO_4	
	B) Na ₂ CO ₃	D) A	ICl ₃	
0.31	Which of the	e following is acidic s	alt?	
C	A) Na ₂ SiO ₃	C) K	$_2SO_4$	
	B) $Na_2B_4O_7$	D) Fe	eCl ₃	
0.32	According to	D Lewis theory:		
	• Acid is e	electron pair acceptor	•	
	• Base is e	electron pair donor		
	All of the fol	lowing are Lewis aci	ds EXCEPT:	
	A) H^+	C) B	F3	
	B) AlCl ₃	D) Pe	Cl ₃	
0.33	Which of th	e following halide i	ons is stronger Lewis	
2.00	base?	8	8	
	A) F	C) Bi	r	
	B) Cl ⁻	D) I ⁻		
Q.34	An indicator	r is a substance whicl	h is used to determine	
	the end po	int of a reaction.	All of the following	
	statements a EXCEPT:	re correctly matched	regarding indicators	
	Options	Type of Titration	Name of Indicator	
	A)	Acid base indicators	Phenolphthalein, methyl orange	
			$K_3[Fe(CN)_6]$ an	
	D)	D aday titration	internal indicator,	
	Б)	Redox infanon	KMnO ₄ an external	
			indicator	
	C)	Iodimetry titration	Starch indicator	
	D)	Argentometry	K ₂ CrO ₄	
Q.35	Phenolphtha	alein is used as an i	ndicator in acid base	
	titration. Fo	r which of the follow	ing acid base titration	
	it is used as	an indicator:		
	A) Strong ba	se and strong acid		
	B) Weak acid	and weak base		
	C) Strong aci	d and weak base		
	D) Very wea	k base and strong acid		1

ANSWER KEY (Worksheet-17)							
1	D	11	Α	21	Α	31	D
2	В	12	D	22	D	32	D
3	С	13	С	23	С	33	Α
4	Α	14	С	24	В	34	В
5	С	15	B	25	В	35	Α
6	Α	16	D	26	С		
7	Α	17	С	27	D		
8	С	18	D	28	С		
9	D	19	B	29	A		
10	B	20	С	30	С		

ANSWERS EXPLAINED

- Q.1 (D) It is not applicable to stoichiometric calculation because in the assumptions of stoichiometric calculations, the whole amount of reactant is converted into product but in case of reversible reaction the whole amount of reactant does not convert into product.
- Q.2 (B) At equilibrium the amount of reactant ≠ amount of product. However at equilibrium the rate of forward reaction = rate of reverse reaction.
- Q.3 (C) In reaction $A + B \rightarrow AB$

Rate of forward reaction = k[A][B]

According to condition if concentration of **A** and **B** are **doubled**, then rate of forward reaction will increases four times as shown below.

Rate of forward reaction

= k[A][B] = k[2][2] = 4k

- **Q.4** (A) The numerical value of K_c and K_p for a reaction changes with change of temperature. There are three possibilities.
 - Case # I If $\Delta H = 0 \rightarrow K_c$ remains same at different temperature.

- Case # II If $\Delta H = + \rightarrow K_c$ increases with the increase of temperature.
- Case # III If $\Delta H = \rightarrow K_c$ decreases with the increase of temperature.
- Q.5 (C) "Le-Chatelier's Principle states that if a stress is applied to system at equilibrium, the system acts in such a way so as to nullify, as far as possible, the effect of that stress.
- Q.6 (A) Since the number of moles of reactants = number of moles of products, so there is no effect of increase or decrease in pressure in the given reversible reaction.

Q.7 (A) In this reaction
$$K_c$$
 has no unit

$$H_2 + I_2 \Longrightarrow 2HI$$

$$\mathbf{K}_{\mathbf{c}} = \frac{[HI]^2}{[H_2][I_2]} = \underbrace{(moldm^{-5})^2}_{(moldm^{-5})(moldm^{-5})} \rightarrow$$

So K_c has no unit.

Q.8 (C)
$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$

$$\mathbf{K}_{\mathbf{c}} = \frac{\left[SO^3\right]^2}{\left[SO^2\right]^2 \left[O^2\right]}$$

$$= \frac{(moldm^3)^2}{(moldm^{-3})^2} = dm^3 mol^{-1}$$

Q.9 (D) MgCO_{3(s)}
$$\longrightarrow$$
 MgO_(s) + CO_{2(g)}

In this reaction heterogeneous equilibrium is established because reactant and products are not in the same phase.

Q.10 (B) $\Delta H = 0$ then the value of K_c is constant, independent of temperature i.e the value of K_c neither **increases** nor **decreases**.

- Q.11 (A) The pKa values of acids HI, HC/O₃, HNO₃ and H₂SO₄ are -10, -1.0, -1.3 and -3.0 respectively. Smaller is pK_a value stronger is the acid so HI is stronger acid than that of HClO₃, HNO₃ and H₂SO₄.
- Q.12 (D) The elements of IA group form the strongest bases i.e NaOH, KOH, CsOH etc.
- Q.13 (C) In fact greater is pKa value, weaker is the acid, as already explained in Q#11.
- Q.14 (C) Acidic buffer solution is prepared by mixing weak acid and salt of it with strong base. So HCl + NaCl cannot form acidic buffer solution because HCl is strong acid and it does not fulfill the condition of acidic buffer solution.
- Q.15 (B) As we know that $K_{a}K_{b} = 10^{-14}$

$$K_a = 10^{-6}$$
 $K_b \ge 10^{-6} = 10^{-14}$

 $K_{b} = \frac{10^{-1}}{10^{-6}}$ $K_{b} = 10^{-14 + 6}$

$$K_b = 10^{-8}$$

- Q.16 (D) The equilibrium constant for a reversible reaction indicates the extent of a reaction. It gives no information about the rate of reaction. K_c tells us how far, but not how fast the reaction goes. In fact, the extent and the rate of a reaction are quite independent.
- Q.17 (C) In fact, K_{sp} concept is valid only for saturated solutions in which the total concentration of ions is no more than about 0.01 moldm⁻³. This means that it is quite inappropriate to use the solubility product concept for

soluble compounds such as NaCl, CuSO₄ etc. It is applicable for sparingly soluble salts.

Q.18 (D) A catalyst provides an alternative route for a reaction to take place with a **lower activation energy**, so that the **speed** of the **reaction increases**.

Q.19 (B)
$$\mathbf{pH} = -\log (10^{-7}) = 7$$
, ... i
 $\mathbf{pK_w} = -\log (10^{-14}) = 14$, ... ii
 $H_2O \rightleftharpoons H^+ + OH^-$
 $K_a = \frac{[H^+][OH^-]}{[H_2O]} \Rightarrow [H_2O]K_a = [H^+][OH^-] = K_w$
 $\therefore K_a = \frac{K_w}{[H_2O]}$... iii

 $-\log K_a = -\log K_w + \log [H_2 O],$ $pK_a = pK_w + \log \frac{1000}{18}$

where
$$\log \frac{1000}{18} = \log 55.5 = 1.74$$
 ...iv

$$pKa = 14 + 1.74 = 15.74$$
v

Option	Smallest	Larger	Largest
В	pН	рК _w	pKa
В	7	14	15.74

Conclusion in case (B) the values of pH, pK_w and pK_a increase respectively.

Q.20 (C) In is not optimum condition in order to get maximum yield of ammonia. In the given reaction as shown below:

$$N_{2(g)} + 3H_{2(g)} \Longrightarrow 2NH_{3(g)}$$

 $\Delta H = -92 \text{ kJ}$
 $\Delta H = -46 \text{ kJ mol}^{-1}$

Since the forward reaction is exothermic, the temperature should be kept low (400°C), so that reaction should remain in the forward direction.

Topic-8

- Other optimum condition:
- i. High pressure (200 300 atm): With increase in pressure reaction moves in the forward direction

ii. Continuous withdrawal of ammonia

As a result, continuous withdrawal of ammonia the reaction moves in the forward direction because concentration of product decreases continuously. That is why reaction continuously moves in the forward direction.

- iii. Use of catalyst Fe along with promoters (MgO, Al₂O₃, SiO₂) speeds up the reaction.
- Q.21 (A) Henderson's equation for acidic **buffer solution is** $pH=pK_a+\log \frac{[Salt]}{[Acid]}$

Other options B, C and D are incorrect.

- O.22 (D) pH = Ka is incorrect option. All the other options A, B and C are correct because they fulfill the conditions of Henderson's equation for acidic buffer solution.
- Q.23 (C) For common ion effect only the term electrolyte is used because for common ion effect that substance is taken which must be ionized in the solution. There are many acids and bases which do not dissociate into ions. So they cannot be treated as electrolytes.

Q.24 (B) $C_2H_5OH + CH_3COOH \rightleftharpoons CH_3COOC_2H_5 + H_2O$ 2moles $\rightleftharpoons 0$ mole 2moles 0mole

$$2-x \quad 2-x \quad xmole \quad xmole$$
Eq. molar cone.
$$\frac{2-x}{v} \quad \frac{2-x}{v} \quad \frac{x}{v} \quad \frac{x}{v}$$

$$\mathbf{K}_{c} = \frac{\left[\mathbf{CH}_{3}\mathbf{COOC}_{2}\mathbf{H}_{3}\right]\left[\mathbf{H}_{2}\mathbf{O}\right]}{\left[\mathbf{CH}_{3}\mathbf{COOH}\right]\left[\mathbf{C}_{2}\mathbf{H}_{5}\mathbf{OH}\right]}$$

$$\mathbf{K}_{c} = \frac{\frac{x}{v} \cdot \frac{x}{v}}{\left(\frac{2-x}{v}\right)^{2}} = \frac{x^{2}}{\left(2-x\right)^{2}}$$

$$4 = \frac{x^{2}}{\left(2-x\right)^{2}}$$

$$4 = \frac{x^{2}}{\left(2-x\right)^{2}} = 4 \dots \text{ (i)}$$
By taking under root on both side in equation (i) we get
$$\frac{x}{2-x} = 2$$

$$x = 4 - 2x$$

$$x = 2 (2 - x)$$

$$\frac{x}{2-x} = 2$$

$$x = 4 - 2x$$

$$x = 2 (2 - x)$$

$$x + 2x = 4$$

$$3x = 4$$

$$x = \frac{4}{3} = 1.33$$
 moles

Q.25 (B) Given data pKa = 4.7, [CH₃COOH] $= 0.01 \text{ moldm}^{-3}$ $[CH_3COONa] = 0.1 \text{ moldm}^{-3}$ $\mathbf{pH} = \mathbf{pKa} + \log \frac{[Salt]}{[Acid]}$ $pH = pKa + log \frac{\left[CH_{3}COONa\right]}{\left[CH_{3}COOH\right]}$ $\mathbf{pH} = \mathbf{pKa} + \mathbf{log} \frac{\begin{bmatrix} \mathbf{0.1} \end{bmatrix}}{\begin{bmatrix} \mathbf{0.01} \end{bmatrix}}$

$$pH = 4.7 + log \frac{[0.1]}{[0.01]}$$

 $pH = 4.7 + 1 = 5.7$

- Q.26 (C) It is incorrect statement. In fact, when temperature is increased at equilibrium then reaction always moves towards endothermic side.
- Q.27 (D) Statements I, II and III are correct as given in the question.

Q.28 (C)
$$pH + pOH = 14$$

- Q.29 (A) Greater is the K_a value, stronger is the acid.
- Q.30 (C) Na₂SO₄ is a neutral salt and it cannot be hydrolyzed. Such salt which are formed by strong acids and strong bases are not hydrolyzed because their conjugates are weak in nature.

- Q.31 (D) FeCl₃ is acidic salt because it is formed by neutralization of strong acid HCl and weak base Fe(OH)₃.
- Q.32 (D) PCl₃ is Lewis base because it acts as electron pair donor.
- Q.33 (A) The strength of anions as base can alternatively be expressed in terms of electronegativity of anion. More is the electronegativity of atom carrying negative charge, more will be its basic nature i.e. order of decreasing basic strength of halide ions is as follow:

•
$$\mathbf{F}^- > \mathbf{C}\mathbf{I}^- > \mathbf{B}\mathbf{r}^- > \mathbf{I}^-$$

- $NH_2^- > OH^- > SH^-$
- Q.34 (B) In fact, K₃[Fe(CN)₆] is used as an external indicator while KMnO₄ is used as an internal indicator.
- Q.35 (A) Phenolphthalein is used as an indicator in such acid base titration in when strong base is taken such as NaOH, KOH etc.

A PROGRAM BY PUNJAB GROUP

