CHEMISTRY

Worksheet-17

(A. Physical Chemistry)
 Chemical Equilibrium

Q. 1 A reversible reaction shows all of the following characteristic features EXCEPT:
A) It can proceed in both directions
B) In it the whole amount of reactant does not change into product
C) Chemical equilibrium can establish in it
D) It is applicable to stoichiometric calculation
Q. 2 Chemical equilibrium is not associated with:
A) It is macroscopic property
B) At equilibrium the amount of reactant $=$ the amount of product
C) It is established in closed system
D) It can establish from either side of reactant or product
Q. 3 If the reaction $A+B \rightarrow A B$. If concentration of A and B are doubled, the rate of reaction will:
A) Increase two times
B) Decrease to one half
C) Increase four times
D) Decrease to one
Q. 4 Which one of the following factors can change the value of Kc?
A) Temperature
B) Pressure
C) Concentration of reactants
D) Concentration of products
Q. 5 Which of the following principle / rule is applicable at equilibrium?
A) Law of mass action
B) Pauli's Exclusion Principle
C) Le-Chatelier's Principle
D) Hund's Rule
Q. 6 In which of the following reactions decrease or increase in pressure has no effect in the change of direction of reaction?
A) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
B) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
C) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
D) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
Q. 7 In which of the following reactions, K_{c} value has no unit?

USE THIS SPACE FOR SCRATCH WORK
A) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
B) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
C) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
D) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
Q. $8 \quad$ Consider the following reaction $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \stackrel{\mathrm{~V}_{2} \mathrm{O}_{5}}{\rightleftharpoons} 2 \mathrm{SO}_{3}$ the unit of K_{c} is:
A) $\mathrm{mol} \mathrm{dm}^{-3}$
B) $\mathrm{dm}^{3} \mathrm{~mol}^{-2}$
C) $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$
D) $\mathrm{dm}^{6} \mathrm{~mol}^{-2}$
Q. 9 In which of the following reactions, heterogeneous equilibrium is established?
A) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
B) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
C) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
D) $\mathrm{MgCO}_{3} \rightleftharpoons \mathrm{MgO}+\mathrm{CO}_{2}$
Q. 10 Which one of the following statements is correct about a reaction for which the equilibrium constant is independent of temperature?
A) The activation energies for both forward and reverse reactions are zero
B) The enthalpy change is zero
C) Its rate constants do not vary with temperature
D) There are equal number of moles of reactants and products in it
Q. 11 Which of the following is the strongest acid?
A) HI
B) HNO_{3}
C) HClO_{3}
D) $\mathrm{H}_{2} \mathrm{SO}_{4}$
Q. 12 Which one of the following groups of elements forms strongest bases?
A) IVA
C) IIA
B) IIIA
D) IA
Q. 13 Which one of the following statements is incorrect?
A) Strong acid has greater concentration of hydrogen ions
B) Strong acid has low pH value
C) Greater is pK_{a} value, stronger is the acid
D) Smaller is concentration of OH^{-}ions weaker is the base
Q. 14 Which of the following is not buffer solution?
A) $\left.\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONaC}\right) \mathrm{HCl}+\mathrm{NaCl}$
B) $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NaHCO}_{3}$
D) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Na}_{2} \mathrm{HPO}_{4}$
Q. 15 If K_{a} value is 10^{-6} then $K b$ value is:
A) 10^{-4}
B) 10^{-8}
C) 10^{-6}
D) 10^{-10}
Q. 16 Which one of the following statements is incorrect for K_{c} ?
A) It may or may not have unit
B) It depends on equilibrium concentration
C) It is associated with $\Delta \mathrm{H}$
D) It tells us about rate of reaction
Q. 17 All of the following are characteristic features of solubility product EXCEPT?
A) If solubility is known, then $K_{\text {sp }}$ can be calculated
B) If $K_{\text {sp }}$ is known, then solubility can be calculated
C) It is applicable if the molar concentration of ions is greater than 0.1 M
D) The term $K_{\text {sp }}$ is related with reversible process
Q. 18 Which one of the following statements is correct about the effect of a catalyst?
A) It increases the equilibrium constant for the forward reaction
B) It increases the rate constant for the forward reaction but not that of the reverse reaction
C) It increases the yield of product at equilibrium
D) It provides an alternative route for a reaction
Q. 19 Water dissociates as shown:

$$
\mathbf{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathbf{H}^{+}+\mathbf{O H}^{-}
$$

At $25^{\circ} \mathrm{C}$ the equilibrium value of $\left[\mathrm{H}^{+}\right]$is $10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$, $\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{1000}{18} \mathrm{~mol} \mathrm{dm}^{-3}$. What is the order of increasing numerical value of $\mathrm{pH},{ }_{\mathrm{p}} \mathrm{K}_{\mathrm{a}}$ and ${ }_{\mathrm{p}} \mathrm{K}_{\mathrm{w}}$ for this equilibrium at this temperature? $\quad\left[{ }_{p} K_{w}=-\log K_{w}\right]$

Options	Smallest	Larger	Largest
A)	pH	${ }_{\mathrm{p}} \mathrm{K}_{\mathrm{a}}$	${ }_{\mathrm{p}} \mathrm{K}_{\mathrm{w}}$
B)	pH	${ }_{\mathrm{p}} \mathrm{K}_{\mathrm{w}}$	${ }_{\mathrm{p}} \mathrm{K}_{\mathrm{a}}$
C)	pK_{a}	${ }_{\mathrm{p}} \mathrm{K}_{\mathrm{w}}$	$\mathrm{pH}^{(\mathrm{D})}$
pK	w	${ }_{\mathrm{p}} \mathrm{K}_{\mathrm{a}}$	pH

Q. 20 In order to get maximum yield of NH_{3}, all of the following are optimum conditions EXCEPT?
A) High pressure
B) Continuous withdrawal of NH_{3}
C) High temperature
D) Use of catalyst
Q. 21 Which of the following is Henderson's equation for acidic buffer solution?
A) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$
B) $\mathrm{pH}=\mathrm{K}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$
C) $\mathrm{pH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$
D) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log \frac{[\text { Salt }]}{[\text { Acid }]}$
Q. 22 Which of the following statements is incorrect about Henderson's equation for acidic buffer solution?
A) $\mathrm{pH}=\mathrm{pKa}$ if $[$ Salt $]=[$ Acid $]$
B) $\mathrm{pH}>\mathrm{pKa}$ if $[$ Salt $]>$ [Acid]
C) $\mathrm{pH}<\mathrm{pKa}$ if [Salt] $<$ [Acid]
D) $\mathrm{pH}=\mathrm{Ka}$ if $[$ Salt $]=[$ Acid $]$
Q. 23 The decrease in the solubility of an electrolyte by adding another electrolyte having common ion is called common ion effect. Identify incorrect statement about common ions effect:
A) It is an application of Le-Chatelier's Principle
B) It is always in the reverse direction
C) The term electrolyte, acid or base is used for it
D) It is used for the purification of a substance
Q. 24 The equilibrium constant for the reaction between acetic acid and ethyl alcohol is $\mathbf{4 . 0}$. A mixture of $\mathbf{2 . 0}$ moles of acetic acid and 2.0 moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is allowed to come to equilibrium. Calculate the number of moles of ethyl acetate at equilibrium

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftarrows \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}
$$

A) 1.5 moles
B) 1.3 moles
C) 1.6 moles
D) 1.4 moles
Q. 25 Given that pKa of acetic acid is 4.7, what is pH of solution of 0.01 M acetic acid and 0.1 sodium acetate is:
A) 3.7
B) 5.7
C) 4.7
D) 2.7
Q. 26 The Le-Chatlier principle states that if a stress is applied to a system at equilibrium, the system acts in such a way so as to nullify as far as possible, the effect of that stress. Which of the following effect of change is not according to this principle:

Opt.	Change at equilibrium	Effect of change
A)	Increase in concentration of reactant	Reaction moves in the forward direction
B)	Increase in pressure	Reaction moves in that direction which has less number of moles
C)	Increase in temperature	Reaction always moves in the exothermic side
D)	Increase in the concentration of the product	Reaction moves in the reverse direction

Q. 27 Different relationship between K_{c} and K_{p} are given:

Cond.	Case	Example	Conclusion
I	$\begin{aligned} & \text { If } \Delta \mathbf{n}=\mathbf{0} \\ & \left(\mathbf{n}_{\mathrm{p}}=\mathbf{n}_{\mathbf{r}}\right) \end{aligned}$	$\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons \mathbf{2 H I}$	$\mathbf{K}_{\mathbf{p}}=\mathbf{K}_{\mathbf{c}}$
II	$\begin{gathered} \text { If } \Delta \mathrm{n}=+\mathrm{ve} \\ \left(\mathbf{n}_{\mathrm{p}}>\mathbf{n}_{\mathbf{r}}\right) \end{gathered}$	$\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathbf{C l}_{2}$	$\mathbf{K}_{\mathbf{p}}>\mathbf{K}_{\mathbf{c}}$
III	$\begin{gathered} \text { If } \Delta \mathrm{n}=-\mathrm{ve} \\ \left(\mathbf{n}_{\mathrm{p}}<\mathbf{n}_{\mathbf{r}}\right) \end{gathered}$	$\mathbf{N}_{2}+3 \mathbf{H}_{2} \rightleftharpoons 2 \mathbf{N H}_{3}$	$\mathbf{K}_{\mathbf{p}}<\mathbf{K}_{\text {c }}$

Which of the following relationship between K_{c} and K_{p} is/are correct?
A) I only
C) III only
B) II only
D) I, II, III
Q. 28 pH of an aqueous solution is $\mathbf{1 0 . 0}$ Its $\mathbf{~} \mathrm{OH}$ is:
A) 7
B) 9
C) 4
D) 10
Q. 29 Mark the correct statement:
A) Greater is the Ka value, stronger is the acid
B) Greater is pH value, stronger is the acid
C) Greater is pKa value, stronger is the acid
D) Smaller is H^{+}ion concentration, stronger is the acid
Q. 30 The phenomenon of interaction of cations and anions of a salt with water in order to produce acidity or

USE THIS SPACE FOR SCRATCH WORK alkalinity is known as salt hydrolysis. Which of the following salts is not hydrolyzed?
A) CuSO_{4}
B) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
D) AlCl_{3}
Q. 31 Which of the following is acidic salt?
A) $\mathrm{Na}_{2} \mathrm{SiO}_{3}$
B) $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$
C) $\mathrm{K}_{2} \mathrm{SO}_{4}$
D) FeCl_{3}
Q. 32 According to Lewis theory:

- Acid is electron pair acceptor
- Base is electron pair donor

All of the following are Lewis acids EXCEPT:
A) H^{+}
B) AlCl_{3}
C) BF_{3}
D) PCl_{3}
Q. 33 Which of the following halide ions is stronger Lewis base?
A) F^{-}
B) Cl^{-}
C) Br^{-}
D) I^{-}
Q. 34 An indicator is a substance which is used to determine the end point of a reaction. All of the following statements are correctly matched regarding indicators EXCEPT:

Options	Type of Titration	Name of Indicator
A)	Acid base indicators	Phenolphthalein, methyl orange
B)	Redox titration	$\mathrm{K} 3\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ an internal indicator, KMnO_{4} an external indicator
C)	Iodimetry titration	Starch indicator
D)	Argentometry	$\mathrm{K}_{2} \mathrm{CrO}_{4}$

Q. 35 Phenolphthalein is used as an indicator in acid base titration. For which of the following acid base titration it is used as an indicator:
A) Strong base and strong acid
B) Weak acid and weak base
C) Strong acid and weak base
D) Very weak base and strong acid

ANSWER KEY (Worksheet-17)							
1	D	11	A	21	A	31	D
2	B	12	D	22	D	32	D
3	C	13	C	23	C	33	A
4	A	14	C	24	B	34	B
5	C	15	B	25	B	35	A
6	A	16	D	26	C		
7	A	17	C	27	D		
8	C	18	D	28	C		
9	D	19	B	29	A		
10	B	20	C	30	C		

ANSWERS EXPLAINED

Q. 1 (D) It is not applicable to stoichiometric calculation because in the assumptions of stoichiometric calculations, the whole amount of reactant is converted into product but in case of reversible reaction the whole amount of reactant does not convert into product.
Q. 2 (B) At equilibrium the amount of reactant \neq amount of product. However at equilibrium the rate of forward reaction $=$ rate of reverse reaction.
Q. 3 (C) In reaction $\mathbf{A}+\mathbf{B} \rightarrow \mathbf{A B}$

Rate of forward reaction $=k[A][B]$
According to condition if concentration of \mathbf{A} and \mathbf{B} are doubled, then rate of forward reaction will increases four times as shown below.

Rate of forward reaction
$=\mathrm{k}[\mathrm{A}][\mathrm{B}]=\mathrm{k}[2][2]=4 \mathrm{k}$
Q. 4 (A) The numerical value of K_{c} and K_{p} for a reaction changes with change of temperature. There are three possibilities.

- Case \# I If $\Delta \mathrm{H}=0 \rightarrow \mathrm{~K}_{\mathrm{c}}$ remains same at different temperature.
- Case \# II If $\Delta \mathrm{H}=+\rightarrow \mathrm{K}_{\mathrm{c}}$ increases with the increase of temperature.
- Case \# III If $\Delta \mathrm{H}=-\rightarrow \mathrm{K}_{\mathrm{c}}$ decreases with the increase of temperature.
Q. 5 (C) "Le-Chatelier's Principle states that if a stress is applied to system at equilibrium, the system acts in such a way so as to nullify, as far as possible, the effect of that stress.
Q. 6 (A) Since the number of moles of reactants $=$ number of moles of products, so there is no effect of increase or decrease in pressure in the given reversible reaction.
Q. 1 (A) In this reaction K_{c} has no unit
$\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$

$$
\mathbf{K}_{\mathbf{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{\left(\text { mooth } \mathrm{m}^{-5}\right)^{2}}{\left(\text { mold } \mathrm{m}^{-1}\right)\left(\text { mold } \mathrm{m} \mathrm{~m}^{-1}\right)}
$$

So K_{c} has no unit.
Q. 8 (C) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \stackrel{\mathrm{~V}_{2} \mathrm{O}_{5}}{\rightleftharpoons} 2 \mathrm{SO}_{3}$

$$
\begin{aligned}
\mathbf{K}_{\mathbf{c}} & =\frac{\left[\mathrm{SO}^{3}\right]^{2}}{\left[\mathrm{SO}^{2}\right]^{2}\left[\mathrm{O}^{2}\right]} \\
& =\frac{\left(\text { moldm }^{-3}\right)^{2}}{\left(\text { moldm }^{-3}\right)^{2}\left(\text { moldm }^{-3}\right)}=\mathrm{dm}^{3} \mathrm{~mol}^{-1}
\end{aligned}
$$

Q. 9 (D) $\mathrm{MgCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{MgO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$

In this reaction heterogeneous equilibrium is established because reactant and products are not in the same phase.
Q. 10 (B) $\Delta \mathbf{H}=\mathbf{0}$ then the value of $\mathbf{K}_{\mathbf{c}}$ is constant, independent of temperature i.e the value of K_{c} neither increases nor decreases.
Q. 11 (A) The pKa values of acids $\mathrm{HI}, \mathrm{HClO}_{3}$, HNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are -10, -1.0, -1.3 and $\mathbf{- 3 . 0}$ respectively. Smaller is $\mathbf{p K}_{\mathrm{a}}$ value stronger is the acid so $\mathbf{H I}$ is stronger acid than that of $\mathbf{H C l O}_{3}$, HNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Q. 12 (D) The elements of IA group form the strongest bases i.e $\mathbf{N a O H}, \mathbf{K O H}$, CsOH etc.
Q. 13 (C) In fact greater is pK a value, weaker is the acid, as already explained in Q\#11.
Q. 14 (C) Acidic buffer solution is prepared by mixing weak acid and salt of it with strong base. So $\mathbf{H C l}+\mathbf{N a C l}$ cannot form acidic buffer solution because $\mathbf{H C l}$ is strong acid and it does not fulfill the condition of acidic buffer solution.
Q. 15 (B) As we know that $K_{a} \cdot K_{b}=10^{-14}$

$$
K_{a}=10^{-6} \quad K_{b} \times 10^{-6}=10^{-14}
$$

$$
K_{b}=\frac{10^{-14}}{10^{-6}}
$$

$$
K_{b}=10^{-14+6}
$$

$$
K_{b}=10^{-8}
$$

Q. 16 (D) The equilibrium constant for a reversible reaction indicates the extent of a reaction. It gives no information about the rate of reaction. K_{c} tells us how far, but not how fast the reaction goes. In fact, the extent and the rate of a reaction are quite independent.
Q. 17 (C) In fact, $\mathbf{K}_{\text {sp }}$ concept is valid only for saturated solutions in which the total concentration of ions is no more than about $0.01 \mathrm{moldm}^{-3}$. This means that it is quite inappropriate to use the solubility product concept for
soluble compounds such as NaCl , CuSO_{4} etc. It is applicable for sparingly soluble salts.
Q. 18 (D) A catalyst provides an alternative route for a reaction to take place with a lower activation energy, so that the speed of the reaction increases.
Q. 19 (B) $\mathrm{pH}=-\log \left(10^{-7}\right)=7$,

$p K_{w}=-\log \left(10^{-14}\right)=14, \ldots$ ii
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$

$$
K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]} \Rightarrow\left[\mathrm{H}_{2} \mathrm{O}\right] K_{a}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{w}
$$

$$
\therefore K_{a}=\frac{K_{w}}{\left[H_{2} \mathrm{O}\right]}
$$

$-\log \mathrm{K}_{a}=-\log K_{w}+\log \left[\mathrm{H}_{2} \mathrm{O}\right]$,
$p K_{a}=p K_{w}+\log \frac{1000}{18}$
where $\log \frac{1000}{18}=\log 55.5=1.74$...iv
$\therefore p K a \quad=14+\mathbf{1 . 7 4}=\mathbf{1 5 . 7 4} \quad$...v

Option	Smallest	Larger	Largest
\mathbf{B}	$\mathbf{p H}$	$\mathbf{p K}_{\mathbf{w}}$	$\mathrm{pK}_{\mathbf{a}}$
	7	14	15.74

Conclusion in case (B) the values of $\mathrm{pH}, \mathrm{pKw}$ and pK_{a} increase respectively.
Q. 20 (C) In is not optimum condition in order to get maximum yield of ammonia. In the given reaction as shown below:

$$
\begin{aligned}
& \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})} \\
& \Delta \mathrm{H}=-92 \mathrm{~kJ} \\
& \Delta \mathrm{H}=-46 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Since the forward reaction is exothermic, the temperature should be kept low $\left(400^{\circ} \mathrm{C}\right)$, so that reaction should remain in the forward direction.

- Other optimum condition:
i. High pressure ($\mathbf{2 0 0} \mathbf{- 3 0 0} \mathbf{~ a t m}$): With increase in pressure reaction moves in the forward direction
ii. Continuous withdrawal of ammonia

As a result, continuous withdrawal of ammonia the reaction moves in the forward direction because concentration of product decreases continuously. That is why reaction continuously moves in the forward direction.
iii. Use of catalyst Fe along with promoters $\left(\mathbf{M g O}, \mathbf{A l}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}, \mathbf{S i O}_{\mathbf{2}}\right)$ speeds up the reaction.
Q. 21 (A) Henderson's equation for acidic buffer solution is $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$ Other options B, C and D are incorrect.
Q. 22 (D) $\mathrm{pH}=\mathrm{Ka}$ is incorrect option. All the other options A, B and C are correct because they fulfill the conditions of Henderson's equation for acidic buffer solution.
Q. 23 (C) For common ion effect only the term electrolyte is used because for common ion effect that substance is taken which must be ionized in the solution. There are many acids and bases which do not dissociate into ions. So they cannot be treated as electrolytes.
Q. 24 (B)

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \\
& 2 \text { moles } \quad 2 \text { moles } \rightleftharpoons 0 \text { mole } \quad \text { Omole }
\end{aligned}
$$

$$
2-x \quad 2-x \text { xmole xmole }
$$

Eq. molar conc. $\frac{2-x}{v} \quad \frac{2-x}{v} \quad \frac{x}{v} \quad \frac{x}{v}$

$$
\begin{aligned}
\mathbf{K}_{\mathrm{c}} & =\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathbf{H}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathbf{C O O H}\right]\left[\mathrm{C}_{2} \mathbf{H}_{5} \mathrm{OH}\right]} \\
\mathbf{K}_{\mathrm{c}} & =\frac{\frac{x}{\mathbf{v}} \cdot \frac{x}{\frac{\mathbf{V}}{(2-x)}} \mathbf{V} \cdot \frac{(2-x)}{\mathrm{V}}}{}=\frac{x^{2}}{(2-x)^{2}} \\
\mathbf{4} & =\frac{x^{2}}{(2-x)^{2}} \\
& =\frac{x^{2}}{(2-x)^{2}}=4 \ldots \text { (i) }
\end{aligned}
$$

By taking under root on both side in equation (i) we get

$$
\begin{aligned}
\frac{x}{2-x} & =2 \\
x & =4-2 x \\
x & =2(2-x) \\
x+2 x & =4 \\
3 x & =4 \\
x & =\frac{4}{3}=1.33 \text { moles }
\end{aligned}
$$

Q. 25 (B) Given data $\mathbf{p K a}=4.7$,
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.01 \mathrm{moldm}^{-3}$
$\left[\mathrm{CH}_{3} \mathrm{COONa}\right]=0.1 \mathrm{moldm}^{-3}$
$\mathbf{p H}=\mathbf{p K a}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$
$\mathbf{p H}=\mathbf{p K a}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$\mathbf{p H}=\mathbf{p K a}+\log \frac{[0.1]}{[0.01]}$
$\mathrm{pH}=4.7+\log \frac{[0.1]}{[0.01]}$
$\mathrm{pH}=4.7+1=5.7$
Q. 26 (C) It is incorrect statement. In fact, when temperature is increased at equilibrium then reaction always moves towards endothermic side.
Q. 27 (D) Statements I, II and III are correct as given in the question.
Q. 28 (C) $\mathrm{pH}+\mathrm{pOH}=14$

$$
\begin{aligned}
\mathbf{p O H} & =14-\mathbf{p H} \\
& =14-10 \\
& =4
\end{aligned}
$$

Q. 29 (A) Greater is the K_{a} value, stronger is the acid.
Q. 30 (C) $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is a neutral salt and it cannot be hydrolyzed. Such salt which are formed by strong acids and strong bases are not hydrolyzed because their conjugates are weak in nature.
Q. 31 (D) FeCl_{3} is acidic salt because it is formed by neutralization of strong acid HCl and weak base $\mathrm{Fe}(\mathbf{O H}) 3$.
Q. 32 (D) PCl_{3} is Lewis base because it acts as electron pair donor.
Q. 33 (A) The strength of anions as base can alternatively be expressed in terms of electronegativity of anion. More is the electronegativity of atom carrying negative charge, more will be its basic nature i.e. order of decreasing basic strength of halide ions is as follow:
$\mathrm{F}^{-}>\mathrm{Cl}^{-}>\mathrm{Br}^{-}>\mathrm{I}^{-}$

- $\mathbf{N H}_{2}^{-}>\mathbf{O H}^{-}>\mathbf{S H}^{-}$
Q. 34 (B) In fact, $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is used as an external indicator while KMnO_{4} is used as an internal indicator.
Q. 35 (A) Phenolphthalein is used as an indicator in such acid base titration in when strong base is taken such as $\mathbf{N a O H}, \mathrm{KOH}$ etc.

A PROGRAM BY PUNJAB GROUP

