

1)		asal cavity is sub ous membrane ilage	divided by th C) Nasal D) Bones	septum
	\bigcirc A	ОВ	\bigcirc C	\bigcirc D
2)	_	anous sacs called	with double cavity C) Coelom	:
	B) Perit		D) Scrotal	nc
	\bigcirc A	ОВ	\bigcirc C	\bigcirc D
3)	Surfac a mixt		secretory cel	ls of epithelium is
		leoproteins	C) Phosph	1900 (1900 - 1 00 1900 - 100
	B) Gly	coproteins	D) Lipopr	oteins
	\bigcirc A	○ B	\bigcirc C	\bigcirc D
45	The f	loor of the ch	est is made	by:
4)	A) Pe) Liver
		omach) Diaphragm
	\bigcirc A	ОВ	ОС	\bigcirc D
			0	

5)	A) Network	the alveoli the k of neurons k of capillaries	C) Cush	ion of fluid vork of muscles
	\bigcirc A	\bigcirc B	\bigcirc C	\bigcirc D
6)	B) Glottis	St. 1949	D) Mo	ver complete: ernal nostrils outh
	\bigcirc A	ОВ	\bigcirc C	(D
7)	B) Hinge li		D) Sphi	ncter like action
	\bigcirc A	() B	() C	() D
8)		cavity is subdivi		passage ways:
	\bigcirc A	\bigcirc B	\bigcirc C	\bigcirc D
9)	A) Purple r	in readily com ed haemoglobin ed oxyhemoglo	n	oxygen to form:

C) Bright red haemoglobin
D) Bright red oxyhemoglobin

) A	\bigcirc	В	\bigcirc	С	O D
10)	The oxyge A) Increasi B) Lowerin C) Lowerin D) Increasi	ng pl ng CC ng pH	H of the blo 2 concentra of the blo	ood ation od	in the bloc	
	A	\bigcirc	В	\bigcirc	С	\bigcirc D
11)		illilit oxyg		C)	genated blo 4 ml 54 ml	ood will carry
) A	\bigcirc	В	\bigcirc	С	() D
12)	A) One pol	lypep	sists of just tide chain tide chains B	C)		peptide chains peptide chains
13)	Transpirat become? A) Flaccid B) Turgid	ion i	ncreases v	C)	guard ce Collapsed Ruptured	lls of stomata
	^		D		<u></u>	\bigcirc D

14)	in the end A) Root ha	odermis due	pathway become to the presence C) Pericycl D) Cortex	of:
) A	ОВ	\bigcirc C	\bigcirc D
15)	In sympla through A) Vacuole B) Plasmoo	to the re	nys, sucrose (or eceiver cell: C) Xylem D) Phloem	r sugar) move
) A	ОВ	\bigcirc C	\bigcirc D
16)	The force A) Adhes B) Cohes	ion	on between wat C) Tens D) Imbi	ile
) A	\bigcirc B	\bigcirc C	\bigcirc D
17)	The second secon	f gases takes oors are: des	c) Stomata D) Guard cel	er is lost in the

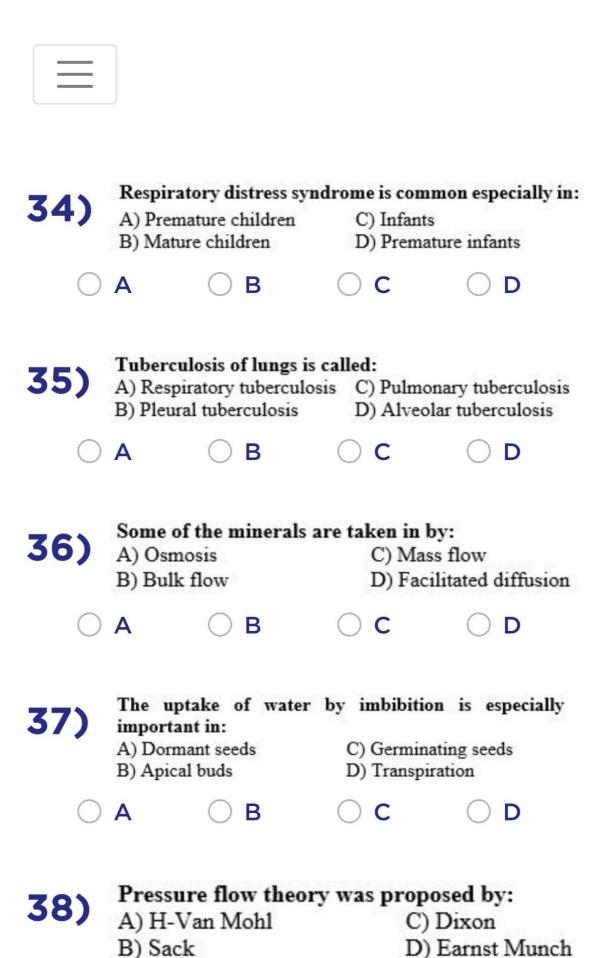
Plants growing in severely dry conditions are:

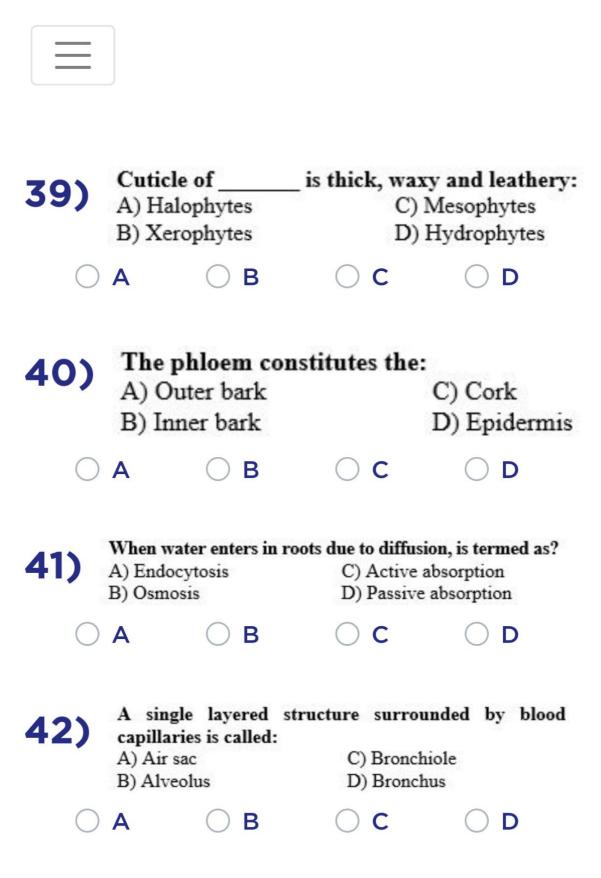
18)	Plants gr A) Halop B) Hydro	rowing in se hytes phytes	everely dry conditions are: C) Mesophytes D) Xerophytes		
\subset	Α	\bigcirc B	\bigcirc C	\bigcirc D	
19)	The open controlled A) Gravity B) Temper	by the:	osing of ston C) Light D) Oxyger	nata is directly	
\subset	Α	\bigcirc B	\bigcirc C	\bigcirc D	
20)	they supp A) Sieve B) Compa	ly ATPs to si	ortant in phloe eve elements: C) Xylem D) Parenc		
	Α	\bigcirc B	\bigcirc C	\bigcirc D	
21)	These are A) Endod B) Root h	ermises	C) Peri	nal cells of roots: cycles dermides	

22) The casparian strips are present in the: A) Cortex C) Pericycle

22)	A) Cort	475	rips are pr	esent in the: C) Pericycle D) Phloem	
\bigcirc	A	ОВ	\bigcirc C	\bigcirc D	
23)	The nas A) Track B) Lary	hea	leads into t	he: C) Throat D) Bronchi	
\bigcirc	A	\bigcirc B	\bigcirc C	\bigcirc D	
24)	The voi A) Epig B) Voca	lottis	man also k	nown as: C) Larynx D) Glottis	
\bigcirc	Α	\bigcirc B	\bigcirc C	\bigcirc D	
25)	Chest cave the sides: A) Ribs, n B) Ribs, p		C) Diaph	and our aragm, muscles a, diaphragm	n
\bigcirc	Α	ОВ	\bigcirc C	\bigcirc D	

26) Carbonic anhydrase presents in:



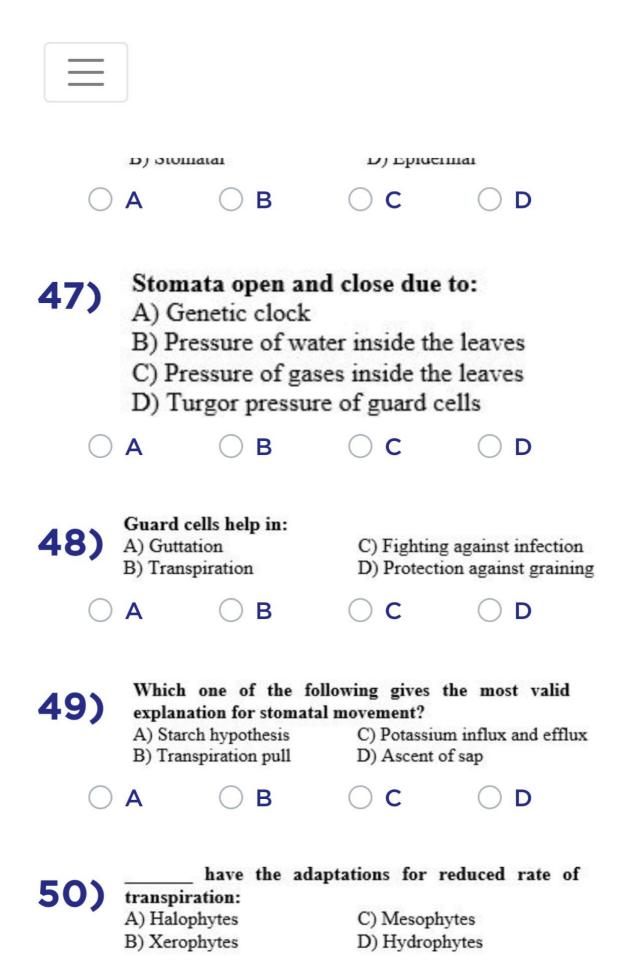

26)	Carbon A) RBC B) WBC		se prese	C) Th	irombocyte asma	•
\bigcirc	Α	ОВ	\bigcirc (\bigcirc D	
27)	It is a b A) Emp		of alveo	C) A	sthma ung cancer	Г
\bigcirc	Α	\bigcirc B	\bigcirc (\bigcirc D	
28)	The fur A) Alve B) Air		nit of hu	C)	ung is: Trachea Bronchiol	e
\bigcirc	Α	\bigcirc B	\bigcirc (\bigcirc D	
29)	Sieve el A) Sieve B) Sieve		characte	C) Con	y: mpanion ce ve areas	11s
\bigcirc	Α	ОВ	\bigcirc (\bigcirc D	

Water and minerals move down their concentration gradient through plasmodesmata, to cells of cortex,

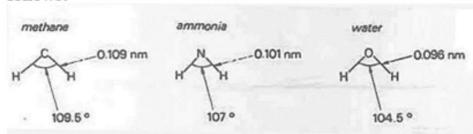
30)	endoder This is a A) Symp B) Mine C) Vacu	t through pla	smodesmata, to and then to sap the: pathway	eir concentration o cells of cortex in the xylem cells	,
\bigcirc	A	ОВ	\circ c	\bigcirc D	
31)	Cohesio A) Dixo B) Ernst	n	C	proposed by:) Sacks) Van Mohl	
32)	It is inv	olved in clo		ita: Abscisic acid Cytokinin	
\bigcirc	Α	\bigcirc B	\bigcirc C	\bigcirc D	
33)	cells by:			ve in the sieve tube	е
	B) Root	•		static pressure	

В

43) Small amount of carbon dioxide is carried by corpuscles combined with:


A) Hemoglobin

C) Sodium


43)	corpuscles A) Hemog	nount of ca s combined w lobin protein	arbon dioxide ith: C) Sodiun D) Potassi	
	A	\bigcirc B	\bigcirc C	\bigcirc D
44)		leaves in depr ily	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	omata on lower
	A	\bigcirc B	\bigcirc C	\bigcirc D
45)	Rate of tr temperate A) 5 °C B) 10 °C		C) 15 °C D) 20 °C	y rise of in
	A	\bigcirc B	\bigcirc C	\bigcirc D
46)	is: A) Cuticul B) Stomat	lar al	C) Lentic D) Epider	
	A	\bigcirc B	\bigcirc C	\bigcirc \mathbf{D}

Stomata open and close due to: 471

The bond lengths and bond angles in the molecules of methane, ammonia and water may be represented as follows:

What causes this trend in the bond angles shown?

- I. Increasing repulsion between hydrogen atoms as the bond length decreases
- II. The number of non-bonding electron pairs in the molecule.
- III. A non-bonding electron pair having a greater repulsive force than a bonding electron pair
- A) I only

C) II and III

B) II only

D) I, II and III

 \bigcirc B

)

D

52) i

Consider the following conditions for stable ionic bond:

- I. ΔiH (ionization enthalpy) of cation forming element should be low
- II. ΔH_{ℓ} (lattice enthalpy) should be low i.e. less negative
- III. ΔeH (electron gain enthalpy) of anion forming element should be more negative

Which of the above statements is incorrect for stable ionic bond?

A) I only

C) II and III

B) II only

D) I, II and III

 \bigcirc B

) (

(D

53)	Which of energy (kJ A) N – N B) F – F		g molecules ha C) H – H D) O – O	s greater bond			
\bigcirc	Α	\bigcirc B	\bigcirc C	\bigcirc D			
54)	Polarity of a molecule is quantitatively measured in terms of dipole moment. The dipole moment may be defined as the product of the electric charge (q) and the distance between positive and negative centre (r). It is used to determine. A) Percentage ionic character of a bond only B) Geometry of the molecule only C) Both A and B D) Neither A nor B						
\bigcirc	A	\bigcirc B	\bigcirc C	\bigcirc D			
55)	theory: I. A sigma II. Covalen orbitals III. Increa order	bond is alway t bonds form are always si sing strength s-s <s-p<p-p bond="" hybrid="" ncreasing="" orbita<="" stren="" th=""><th>es stronger than ed by the overla igma of covalent b</th><th>op of s-s and s-p oonds is in the oonds rrect?</th><th></th></s-p<p-p>	es stronger than ed by the overla igma of covalent b	op of s-s and s-p oonds is in the oonds rrect?			
	-	_		O -			

EC)	Ethene	molecule	is	formed	when	two	carbon	atoms
56)	joined t	ogether to	fo	rm a sign	ma boı	ıd on	ly:	

A) s-sp overlap

C) sp²-sp² overlap

B) sp-sp overlap

D) 2py-2py overlap

 \bigcirc \triangle

(B

) (

57)

Mark the incorrect statement about:

 $H_3N^+ \longrightarrow \overline{B}F_3$

A) NH3 before reaction is in the gaseous state

B) BF3 before reaction is in the gaseous state

C) Adduct product is in the solid state

D) It involves ionic and covalent bond between NH₃ and BF₃

 \bigcirc A

) (

 \bigcirc D

Which of the following groups of elements forms ionic bond with each other?

A) IA, IIA with VIA, VIIA

C) IA with IVA

B) IIIA, IVA with VA, VIA

D) IIA with VIIIA

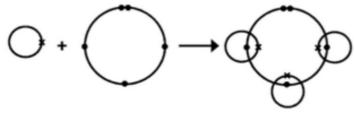
(A

59)

Consider the following statements:

Nature of bonding Substance Physical state Boiling point (°C) Ethanol molecules H-bonding Liquid 78.5 II HCl molecules Dipole-dipole forces Gas -85III n-Hexane molecules London Dispersion forces 68 Liquid IV. Cesium fluoride 1251 Solid Ionic bond

Which of the above statements is/are correct?


A) I only B) II only C) III and IV D) I, II, III and IV

 \bigcirc \land

) (

Consider the following dot-and-cross diagram of a molecule:

Choose the right molecule which follows dot-and-cross diagram:

A) CH₃

C) H2O

B) CO

D) NH₃

- B
-) C
-) D

Which one of the following compounds has both covalent and ionic bond?

A) NaC1

C) NaOH

B) CaO

D) KI

- () A
- (B
-) (

Which of the following molecules has permanent dipole-dipole forces?

- A) Solid iodine molecules
- C) CHCl₃ molecules

B) Solid ice

D) Liquid noble gases

- \bigcirc A
- (B
-) (

Which one of the following is not drawback of valence bond theory?

- A) The formation of coordinate covalent bond
- B) The formation of odd electron molecules or ions

▶ <u></u> <u> </u>	ப்ப் 🖰 😂	16 KB/s 🖸 🖟		► 45% 🖥 1:56 PM
	♣ tps	://onlines	step.pgc.ed	U 39 🚹
63)	A) The form B) The form C) The part	ry? mation of coor mation of odd o amagnetic beha	ing is not drawba dinate covalent bo electron molecules aviour of oxygen r valent bond and sh	nd s or ions
	A	ОВ	\bigcirc C	\bigcirc D
64)		t bond is calle c radius	C) Covalen	
\bigcirc	Α	ОВ	\bigcirc C	\bigcirc D
65)		of the follow est value?	ing molecules th C) CH4 D) SO2	e bond angle has
\bigcirc	A	ОВ	\bigcirc C	\bigcirc D
66)	No electr	ovalent bond i	is 100% ionic in 1	nature. This is

because of:

- A) Highest ionic character is present in CsF only
- B) Sharing of electrons takes place to some extent only
- C) When cations and anions approach each other, natarizahilitu inaraasas antu

00		No electrovalent bond is 100% ionic in nature	. This is
66)	because of:	

- A) Highest ionic character is present in CsF only
- B) Sharing of electrons takes place to some extent only
- When cations and anions approach each other, polarizability increases only
- D) Both B and C

\bigcirc \land		\bigcirc C	
\bigcirc A	\bigcirc B		

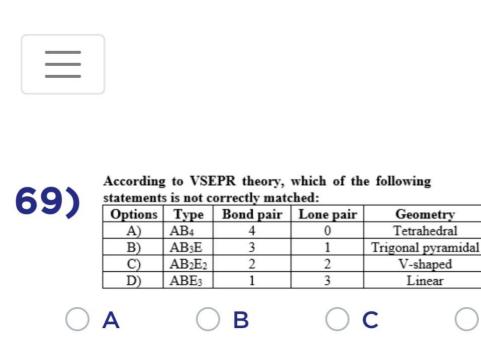
67)

All of the following statements are correctly matched FXCFPT-

LACEI I.					
Options	Molecules	Structural formula	Orbital hybridization	Geometry	Bond angle
A)	Methane	CH ₄	sp ³	Tetrahedral	109.5°
B)	Ethene	$H_2C = CH_2$	sp ²	Trigonal planar	120°
C)	Ethyne	HC ≡ CH	sp	Linear	180°
D)	Propene	CH_3 - $HC = CH_2$	sp ²	Trigonal planar	120°

\bigcirc A	ОВ	\bigcirc C	\bigcirc D
() A			

Which one of the following factors does not increase bond energy:


- A) Greater bond order
- B) Greater electronegativity difference
- C) Smaller size
- D) Greater bond length

	O -	O -	
\bigcirc A	\bigcirc B	\bigcirc C	\bigcirc D

69)

According to VSEPR theory, which of the following statements is not correctly matched:

Options	Type	Bond pair	Lone pair	Geometry	Example
A)	AB ₄	4	0	Tetrahedral	$\mathrm{NH_{4}^{+}}$
B)	AB ₃ E	3	1	Trigonal pyramidal	PH ₃
(N)	ADE	2	2	77 1 1	11.0

70)	not sl A) Th B) Th C) Th	hown by ionic co ney are soluble in ney conduct electr ney are in the solic	mpounds? polar solvents icity in the molte I state	istic properties is n state
	D) Th	ney show isomeris	sm	
	Λ	\bigcirc R	\bigcirc C	\bigcirc D

Example

 NH_4^+

PH₃

 H_2O

BeC12

71)	is the type of this bond?				
	A) pi (π) bondB) Non-polar covalent bond		C) Polar cov D) Co-ordin		
) A	ОВ	\bigcirc C	\bigcirc D	

Metallic solids involve metallic bonding and have all of the following properties EXCEPT:

- A) Basic constituent of metallic solid is atom
- B) Are soluble in liquid metal and also in polar solvent
- C) Metals are good conductor of electricity due to free electrons
- D) They are hard, malleable and ductile

73)

Mark the incorrect statement according to VSEPR:

Mark	Mark the incorrect statement according to VSETK.						
Opt.	Example	Orbitals on the central atom	No. of bond pair (n)	No. of lone pair (m)	VSEPR molecule	Bond angle	Geometry
A)	BeCl ₂	2	2	0	AX_2	180°	Linear
B)	BF ₃	3	3	0	AX_3	120°	Trigonal planar
C)	SO ₂	3	3	0	AX ₃	120°	Linear
D)	NH ₃	4	3	1	AX3E	107.5°	Pyramidal

1	Λ
	A

/		
	- 1	
-		No. of Lot, House, etc., in case, the case, th

_	
	- (

.)	
1	100

74)

Which one of the following ionic compounds has maximum percentage of ionic character?

A) NaC1

C) KBr

B) CsF

D) LiF

- \bigcirc \triangle
- (B
- \bigcirc C

	- 1	
_		

75)

Which of the following bonds is the most polar?

A) C1 - C1

C)C-F

B)N-F

D) O-F

- O A
- \bigcirc B
- \bigcirc

76)

All of the following molecules involve hydrogen bonding EXCEPT:

A) Water

- C) Ethanal
- B) Ethanoic acid
- D) Ethanol

- \bigcirc \land

.....

All of the following statement are correctly matched for

ionic a	nd covalent bonds EXCEPT:	
Opt.	Ionic bond	Covalent bond
	(Electrovalent bond)	(Electron pair bond)
A)	It is formed by complete transfer of electron/electrons from one atom of	It is formed by mutual sharing of electrons between two atoms
	element to the other	
B)	The migrated electron/electrons belongs	The shared electrons pair belongs to
	to only one of the two bonded atoms	both the bonded atoms
C)	It is directional bond	It is non-directional bond
D)	It is shown by positive and negative	It is shown by small line (-) drawn
	charges on the bonded atoms (+, -)	between the two bonded atoms

		4		- Emerge of order	
	(2)	to only one of the two b	onded atoms		onded atoms
	(C) (D)	It is directional bond It is shown by positi	us and nogation		lirectional bond
	ן (ט	charges on the bonded a			vn by small line (-) drawn he two bonded atoms
		charges on the bonded a	itoms (+ , -)	Detween t	ne two bonded atoms
\bigcirc	Α	ОВ	\circ	С	\bigcirc D
78)	A) 7 s	utadiene has num sigma bonds and 1 sigma bonds and 2	pi bond	C) 8 sigm	onds: a bonds and 2 pi bonds a bonds and 1 pi bond
	A	ОВ		C	\bigcirc D
79)	elen A) A	n ents depend up Atomic number	on their:) Electro	ical reactivity of onic configuration onal atomic mass
	A	\bigcirc B		C	\bigcirc D
80)		ich one of the fo	_ C	ostances () SO ₃ () CHCl	is polar in nature?

81)	A) It cans B) It is no metal C) It fails geome	not be applied to ot useful for pre complexes s to predict the e etries	o ionic compoun dicting the geom extent of distorti	netry of transition
	A	ОВ	\bigcirc C	\bigcirc D
82)	required mole of bond end A) Comp B) Estim C) Under	to break all the the substance. ergy, which one paring the streng ating the enthal erstanding structor	e bonds of part There are fou e is the most im	reaction
\bigcirc	Α	\bigcirc B	\bigcirc C	\bigcirc D
83)	orbital h	f the following ybridization? c orbitals taking p	is incorrect stat	ement about

of the nucleus i.e. it has one lobe larger in size than other

- A) Atomic oronais taking part in oronai nyoridization have smaller energy difference
- B) Unhybridized p-atomic orbitals determine geometry of the molecule
- C) Number of atomic orbitals mixed = number of hybrid orbitals
- D) Hybrid orbitals have electron density concentrated on one side of the nucleus i.e. it has one lobe larger in size than other

84)	Which of the (pm)?	following bo	onds has smaller	bond lengtl

) **B**

- B) C = C D) C C
- (A () B () C () D
- The gecko, a small lizard, can climb up a smooth glass window. The gecko has millions of microscopic hairs on its toes and each hair has thousands of pads at its tip. The result is that the molecules in the pads are extremely close to the glass surface on which the gecko is climbing. What is the attraction between the gecko's toe pads and the glass surface?
 - A) Co-ordinate covalent bonds
 - B) van der Waal's forces
 - C) Ionic bonds
 - D) Covalent bonds
 - \bigcirc A \bigcirc B \bigcirc C \bigcirc D

86)	of radiu	s 2.5 m at a co	g is whirled in a honstant speed of 4 pring one revolution (C) 40 J (D) 25 J	m s ⁻¹ . The work
\bigcirc	Α	ОВ	\bigcirc C	\bigcirc D
87)	A partic $\vec{F} = (14\hat{i} + 14\hat{i} + 14$	le is acted $12\hat{j}N$. The	upon by a cons	servative force force when the
	particle i	noves from o	rigin (0, 0) to the tes of the final p	position (-0, 5)
	A) 12 J B) 10 J		C) -45 J D) -180 J	
\bigcirc	A	ОВ	\bigcirc C	\bigcirc D
88)	put it in process y depend u A) Mass o B) Weight C) Height	the book she tou take 10 sec pon: of the book and t of book and to	neight of shelf	t 4 m. In this one by you will

A body travels a displacement of 10 m by force of 30 N.

If work done is 260 J, then angle between \vec{F} and \vec{d} is:

89)		avels a displacen	-	→ →
	Α	\bigcirc B	\bigcirc C	\bigcirc D
90)	The power to a height A) 2.5 kW B) 20 kW		57	0 kg of water
91)	The consur A) 120 J B) 400 J	mption of energy	by 80-watt bull C) 16 J D) 800 J	b in 5 sec is:
92)		omentum of a b e decrease in K.		by 10%, the
\bigcirc	Α	ОВ	\bigcirc C	\bigcirc D

A ball of mass 8 kg and another of mass 10 kg are dropped together from a 90 feet tall building. After a fall of 60 feet each towards earth, their respective K.Es.

93)	A ball of mass 8 kg and another of mass 10 kg are dropped together from a 90 feet tall building. After a
	fall of 60 feet each towards earth, their respective K.Es are in ratio of:

A) 5:4

C) 2:√5

B) 4:5

D) $\sqrt{5}:2$

- \bigcirc A
- \bigcirc B
- \bigcirc
- \bigcirc D

94) Initially, eight identical uniform blocks, each of mass "m" and thickness "h", are spread on a table.

How much work is done on the blocks in stacking them top of one another?

A) 28mgh

C) 36mgh

B) 45mgh

D) 21mgh

- \bigcirc B
-) (

A 10 kg body is thrown vertically upward from the ground with a velocity of 15 m s⁻¹. Its kinetic energy just before hitting the ground is:

A) 625 J

C) 1050 J

B) 1125 J

D) 1275 J

001	Two objects P and Q have the same momentum, Q has
96)	lesser kinetic energy than P if it:

- A) Weighs more than P
- C) Is moving faster than P
- B) Weighs same as P
- D) Is moving slower than P

- \bigcirc \triangle
-) B
-)
-) D

Two identical balls are projected, one vertically up and the other at an angle of 30° with the horizontal, with same initial speed. The potential energy at the highest point is in the ratio:

A) 4:3

C) 3:4

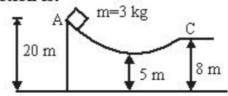
B) 4:1

D) 1:4

- \bigcirc A
- \bigcirc B
- \bigcirc

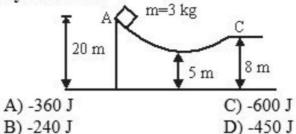
A block of mass 2 kg slides from rest through a distance of 20 m down a frictionless slope, inclined at 30° with horizontal. What is the K.E of the block at the bottom of the slope?

A) 20 J


C) 200 J

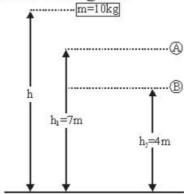
B) 40 J

D) 400 J


- \bigcirc \triangle
- (B
-)
- D

A block of mass 3 kg slides down a rough curved path from point A as shown. If it stops at C, the work done by friction is:

A block of mass 3 kg slides down a rough curved path from point A as shown. If it stops at C, the work done by friction is:



B

B) -240 J

- ____

An object of mass m=10 kg is dropped from height h=10 m as shown in the figure:

The object reaches at "A", "B" and then finally to ground during its free fall. The ratio of P.E at "B" point to P.E at "A" is:

A) 2:1

C) 4:7

B) 7:4

D) 1:2

- \bigcirc B
- \bigcirc (
- \bigcap D

101)	Two bodies are thrown vertically upwards with their
	initial speeds in the ratio 3:2, then the ratio of the
	maximum heights attained by them is:

A) 2:3

C) 4:9

B) 3:2

D) 9:4

- \bigcirc \triangle
- (B
-)
- Two cars of masses m₁ and m₂ are moving along the circular path of radius r₁ and r₂. They take one round in the same time. The ratio of angular velocity of the two cars will be:
 - A) m1:m2

C) r1:r2

B) 1:1

D) m1r1:m2r2

- (A
-) (
- The centripetal force required to keep the body in circular path is F₁. What would be centripetal force if radius becomes half keeping same angular velocity:
 - A) 2F1

C) 4F1

B) $\frac{F_1}{2}$

D) $\frac{F_1}{4}$

- \bigcirc A
- (B
- \bigcirc (

104)

The force required to move a body of mass 1 kg with velocity $100~{\rm m~s^{-1}}$ along a circular path of radius $100~{\rm m}$ is:

A) 100 N

C) 1 N

B) 1000 N

D) Zero

105)

A car moving on a horizontal road may be roll over from the road in taking a turn:

- A) By the gravitational force
- B) Due to the rolling friction force
- C) Due to lack of proper centripetal force
- D) Due to the reaction of ground

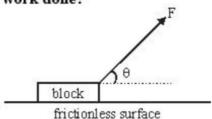
- 1	Λ
- /	

		_
_ \		г
- 1	1	ь
-)		ш

106)

The height of geo-stationary orbit from the surface of earth:

- A) $4.24 \times 10^3 \text{ km}$
- C) $3.6 \times 10^4 \text{ km}$
- B) $4.2 \times 10^4 \text{ km}$
- D) $2.42 \times 10^4 \text{ km}$


_		
		A
(-)	Δ

)

107)

A block of a given material is dragged a horizontal distance x along a frictionless surface by a force F inclined at an angle θ to the horizontal. What is the work done?

A) Fx

C) Fx $\sin \theta$

B) Fx cos θ

D) $\frac{Fx}{\cos\theta}$

 \bigcirc A

D

108)

A bullet moving horizontally at a speed v is stopped by sand in its path. If the mass of the bullet is m and it penetrates a distance x before coming to a stop, what is the average retarding force acting on the bullet?

A) mg

B) $\frac{mv^2}{2x}$

D) $\frac{2mv^2}{r}$

- B
- D

109)

A block of mass 2 kg is lifted through a chain. When block moves through 2 m vertically the velocity becomes 4 m s-1. Work done by chain force until it moves 2 m is:

A) 40 J

C) 24 J

B) 56 J

D) 68 J

- B

A body constrained to move in y-direction is subjected 110) to a force given by $\vec{F} = (-2\vec{i} + 15\vec{j} + 6\vec{k})N$. The work done by this force in moving the body a distance of 10 m along the y-axis is:

A) 20 J

C) 60 J

B) 150 J

D) 190 J

- B

A bicyclist comes to a skidding stop in 10 m. During this process, the force on the bicycle due to the road is 200 N and is directly opposed to the motion. The work done

A bicyclist comes to a skidding stop in 10 m. During this process, the force on the bicycle due to the road is 200 N and is directly opposed to the motion. The work done by road force on cycle is:

A) +2000 J


C) Zero

B) -2000 J

D) -20000 J

-) (
- D

The displacement-time (x-t) graph of a body acted upon by some forces is shown. Which of the following is correct?

- A) From O to A, the total work done by all the forces together is negative
- B) From O to B acceleration is negative
- C) From O to B velocity is first positive, then negative
- D) Both A and C

 \bigcirc \blacktriangle

C

113) A

A 2 kg stone at the end of a string 1 m long is whirled in a vertical circle. The speed of the stone at lower most point of circle is 4 m s⁻¹. The tension in the string at this point is:

A) 20 N

C) 40 N

B) 32 N

D) 52 N

The angular velocity of a wheel increases from 1200 rpm to 4500 rpm in 10 s. The number of revolutions made during this time is:

A) 950

C) 118.75

B) 475

D) 237.5

) A

- \bigcirc B
- \bigcirc (
- \bigcirc D

Starting from rest, a particle rotates in a circle of radius $R = \sqrt{2}$ m with an angular acceleration $\alpha = (\pi/4)$ rad s². The magnitude of average velocity of the particle over the time it rotates a quarter circle is:

A) 1.0 m s⁻¹

C) 2.5 m s⁻¹

B) 1.5 m s⁻¹

D) 2.0 m s⁻¹

 \bigcirc \land

- \bigcirc B

PREVIOUS

FINISH TEST

NEXT

116)	underlined segn circle correspon	nent of the sentence ding to that letter u	which contains the m inder the segment in t	derlined. Your task is a distake that needs to be of the MCQ Response form ther there would be a response.	corrected. Fill t 1.
\bigcirc	A	ОВ	O C		D
117)	We must le	arn <u>to</u> accept :	not only <u>our</u> we B C	eaknesses <u>but</u> our D	strengths.
\bigcirc	A	ОВ	O C		D
118)		rward, <u>one behind t</u> A wept on <u>either side</u> D		eir sides <u>else</u> they rub th B	e slime of the
\bigcirc	A	ОВ	○ c		D
119)	They are devoice social fame.	d of the basic amen	ities of life <u>however</u> C	they fight over petty po	ossessions <u>and</u> D
\circ	A	ОВ	○ c		D
120)	"Good night! the steps.	Behave <u>yourself</u> , b	oy!" she said, <u>looking</u> B	out into the street like l	<u>ae</u> went down
	^				D

121)		k <u>a</u> sigh of relief <u>once</u> th A	e enemy was out of sight,	however, the danger was still C D
\bigcirc	A	ОВ	\bigcirc C	\bigcirc D
122)	No <u>sooner</u> h	ad she <u>finished</u> one p B	project <u>then</u> she started C	working on the next D
\bigcirc	Α	ОВ	\bigcirc C	\bigcirc D
123)	Wetherby res		nes <u>somewhat, so</u> its subsec	quent history never <u>raised it</u> to C D

You're such a remarkable old boy whom one never knows.) B

B

Public oratory is $\underbrace{\underline{much}}_{A}$ a matter $\underbrace{\underline{of}}_{B}$ bliss as $\underline{\underline{a}}$ domain of confidence $\underline{\underline{and}}$ body language. 125)

B

1	7	6	1
	_	O	J

Directions: In each of the following questions, four alternative sentences are given. Choose the correct one and fill the Circle corresponding to that letter in the MCQ Response Form.

- A) Because he is intelligent Therefore he gets good marks.
- B) Because he is intelligent so he gets good marks.
- C) Because he is intelligent, he gets good marks.
- D) Since he is intelligent and he gets good marks.

\bigcap Λ	\bigcirc B	\bigcirc C	
\bigcirc A	\cup \triangleright		

127)

- A) I saw The Wizard of Oz on television, and the movie was filmed in 1939.
- B) I saw The Wizard of Oz on television. The movie was filmed in 1939.
- C) I saw The Wizard of Oz on television unless and the movie was filmed in 1939.
- D) I saw The Wizard of Oz on television. Though the movie was filmed in 1939.

\bigcirc A	\bigcirc B	\bigcirc C	\bigcirc D
OA			

128)

- A) There is nothing such shameful as to be called a liar.
- B) There is nothing so shameful as to called a lair.
- C) There is nothing so shameful that to be called a liar.
- D) There is nothing so shameful as to be called a liar.

\bigcirc A	○ B	\bigcirc C	

129)

- A) On the whole, the problem that the college dean faces calls for about the same diagnostic ability so the physician's.
- B) On the whole, the problem that the college dean faces calls for about the same diagnostic ability as the physician's.
- C) On the whole, the problem that the college dean faces calls for about the same diagnostic ability that the physician's.
- D) On the whole, the problem that the college dean faces calls for about the same diagnostic ability like the physician's.

\bigcirc A	\bigcirc B	\bigcirc C	\bigcirc D

130	B) Musta C) Musta	fa Kamal inaugurated g fa Kamal inaugurated g	great development moreo great development yet co great development and co great development though	nstruction schemes.
	Α	\bigcirc B	\bigcirc C	\bigcirc D
131)	B) Both (C) His be	his parents between the parents or s	as siblings have turn n his siblings have t liblings have turned lings have turned ag	urned against him. against him.
	A	ОВ	\bigcirc C	\bigcirc D
132)	B) Asif C) Asif	has accepted nei neither has neith	pted nor rejected the ther rejected nor the er accepted nor rej pted nor rejected t	ne proposal. ected the proposal.
\bigcirc	Α	ОВ	\bigcirc C	\bigcirc D
133)	B) The gan C) The gan	ne wasn't cancelled, be ne was cancelled becau		
		D	0	

134)

- A) And my parents could never afford which all my early childhood I longed desperately for a tricycle.
- B) All my early childhood I longed desperately for a tricycle, although my parents could never afford,
- C) Because my early childhood I longed desperately for a tricycle, that my parents could never afford.
- D) All my early childhood I longed desperately for a tricycle, which my parents could never afford.

1	Λ
)	\boldsymbol{A}

 \bigcirc B

134)

- A) And my parents could never afford which all my early childhood I longed desperately for a tricycle.
- B) All my early childhood I longed desperately for a tricycle, although my parents could never afford,
- C) Because my early childhood I longed desperately for a tricycle, that my parents could never afford.
- D) All my early childhood I longed desperately for a tricycle, which my parents could never afford.

		A
()	Δ

135)

- A) During our early childhood Lionel, Sylvia and I never had anything to spend for ourselves
- B) Sylvia and I never had anything to spend for ourselves: and it was during our early childhood Lionel,
- C) During our early childhood Lionel, Sylvia but I never had anything to spend for ourselves
- D) During our early childhood Lionel, Sylvia because I never had anything to spend for ourselves

	Λ
)	

PREVIOUS

FINISH TEST