PHYSICS MDCAT
 Electrostatics

TEST\#01 (UNIT \# 9)

Q. 86 An uncharged metal object M is insulated from its surroundings. A positively charged metal sphere S is then brought near to M. Which diagram best illustrates the resultant distributions of charge on S and M ?

D

Q. 87 Three particles have charges $+10 \mu \mathrm{C}$ each, and they are fixed at the corners of an equilateral triangle of side 0.5 m . The force on each of the particles has magnitude:
A) 6.2 N
C) 2.3 N
B) 11.5 N
D) None of these

The correct expression for the Coulomb's force between two charges placed in vacuum is:
A) $\vec{F}=\frac{1}{4 \pi \epsilon_{0}} \times \frac{q_{1} q_{2}}{r^{2}} \vec{r}$
B) $\vec{F}=\frac{1}{4 \pi \in} \times \frac{q_{1} q_{2}}{r^{2}} \vec{r}$
C) $\vec{F}=\frac{1}{4 \pi \epsilon_{o}} \times \frac{q_{1} q_{2}}{r^{3}} \vec{r}$
D) $\vec{F}=\frac{1}{4 \pi \epsilon} \times \frac{q_{1} q_{2}}{r^{2}} \hat{r}$
Q.89 The coulomb force between a positron and a proton placed at a distance of 3.2 cm is:
A) $5.2 \times 10^{-25} \mathrm{~N}$, repulsive
B) $9.1 \times 10^{-25} \mathrm{~N}$, attractive
C) $1.5 \times 10^{-25} \mathrm{~N}$, repulsive
D) $2.2 \times 10^{-25} \mathrm{~N}$, repulsive
Q. 90 If the distance between two equal point charges is doubled and magnitude of either charge is also doubled, what would happen to the force between them?
A) Force is doubled
C) Force is halved
B) Force is quadrupled
D) Force remains same
Q. 91 The electric field produced by a point charge $q=-4 \times 10^{-6} C$ (placed at origin) at a point 3 \mathbf{m} from origin on the \mathbf{y}-axis is:
A) $\left(-4 \times 10^{3} \hat{j}\right) N C^{-1}$
B) $\left(-8 \times 10^{3} \hat{i}\right) N C^{-1}$
C) $\left(-6 \times 10^{3} \hat{j}\right) N C^{-1}$
D) $\left(-9 \times 10^{3} \hat{k}\right) N C^{-1}$
Q. 92 If a charge of $5 \mu \mathrm{C}$ experiences a force of $10^{-7} \mathrm{~N}$ at a point then electric intensity at that point:
A) $5 \times 10^{1} \mathrm{~N} \mathrm{C}^{-1}$
B) $8 \times 10^{2} \mathrm{NC}^{-1}$
C) $1 \times 10^{-2} \mathrm{~N} \mathrm{C}^{-1}$
D) $\mathbf{2 \times 1 0} 0^{-2} \mathrm{~N} \mathrm{C}^{-1}$
Q. 93 The electric field produced by a point charge varies with distance from point charge as:
A)

C)

B)

D)
Q. 94 The zero-field spot for two equal and opposite charges lies:
A) At mid-point of charges
B) Between the charges but closer to smaller charge
C) Between the charges but closer to larger charge
D) None of these
Q. 95 Two positive point charges $32 \mu \mathrm{C}$ and $8 \mu \mathrm{C}$ are separated by a distance of 6 m . The zerofield spot will be at:
A) Between the charges and at 2 m from smaller charge
B) Between the charges and at 2 m from larger charge
C) Between the charges and at 4 m from the larger charge
D) Both A and C

A 10 C charge experiences a force of 4000 N when moved between two points separated by a distance of 8 cm in a uniform electric field. The potential difference between the two points is:
A) 8 V
B) 16 V
C) 32 V
D) 24 V

The potential gradient between the two charged plates having separation of 0.25 cm and potential difference of $\mathbf{2 4}$ volts is:
A) $9600 \mathrm{~N} \mathrm{C}^{-1}$
B) $7200 \mathrm{~N} \mathrm{C}^{-1}$
C) $4800 \mathrm{~N} \mathrm{C}^{-1}$
D) $2400 \mathrm{~N} \mathrm{C}^{-1}$
Q. 98 The potential difference between two points is two volts. The work done in moving one electron from one point to other point is:
A) One kWh
C) Two electron volt
B) One electron volt
D) One joule
Q. 99 What potential should be applied to the lower plate in the diagram shown to create an electric field of $20,000 \mathrm{~V} \mathrm{~m}^{-1}$ downwards, in between the plates.

Q. 100 A negatively charged rod is held near a capacitor plate X that is earthed. X is:

A) Uncharged and at a negative potential
B) Positively charged and at Earth potential
Q. 101 The capacitor stores charge on its plates by:
A) Electrostatic Induction
C) Electromotive Induction
B) Electromagnetic Induction
D) Electromagnetism
Q. 102 A capacitor which has a capacitance of $100 \mu \mathrm{~F}$ will:
A) Be fully charged in 1 second by a current of $1 \mu \mathrm{~A}$
B) Store $0.1 \mathbf{~ m C}$ of charge at a potential difference of $\mathbf{1}$ volt
C) Gain 1 joule of energy when 1 coulomb of charge is stored on it
D) Discharge in 1 second when connected across a resistor of resistance 1 ohm
Q. 103 The capacity of a parallel plate capacitor is $2 \mu \mathrm{~F}$. When a glass plate is placed between the plates of the condenser, its potential difference reduces to $\frac{1}{3}$ of the original value. The value of dielectric constant of glass is:
A) 1.5
B) 3
C) 6
D) 12
Q. 104 The capacity of a parallel plate capacitor is $5 \mu \mathrm{~F}$ when the distance between the plates is 2.5 cm . If the distance between the plates is increased to 7.5 cm , then the capacitance becomes:
A) $5 \mu \mathrm{~F}$
B) $\frac{5}{3} \mu \mathrm{~F}$
C) $\frac{5}{7} \mu \mathrm{~F}$
D) $15 \mu \mathrm{~F}$
Q.105 The potentials of the two plates of capacitor are +7.5 V and -7.5 V. The charge on one of the plates is $15 \mu \mathrm{C}$. The capacitance of the capacitor is:
A) $1 \mu \mathrm{~F}$
B) $0.5 \mu \mathrm{~F}$
C) $2 \mu \mathrm{~F}$
D) $4 \mu \mathrm{~F}$
Q. 106 A dielectric is inserted between the plates of an isolated charge capacitor. Which of the following is not true about that capacitor?
A) Its energy stored decreases
C) Its charge stored decreases
B) Its potential difference decreases
D) Its potential gradient decreases
Q. $107 \mathrm{~A} 6 \mu \mathrm{~F}$ capacitor is charged to 300 V and then its plates are connected by a wire. How much heat will be produced?
A) 0.27 J
B) 0.54 J
C) 0.81 J
D) 1.08 J
Q. 108 A capacitor is charged to store an energy U. The charging battery is now disconnected. An identical capacitor is now connected to the first capacitor in parallel. The energy stored by combination is:
A) $\frac{U}{4}$
C) U
В) $\frac{U}{2}$
D) $\frac{3 U}{2}$
Q. 109 For a uniformly charged spherical shell of radius " r ", which one of the following graphs shows the variation of the potential with distance " x " from the centre of the shell?
A)

B)

C)

D)

Q. 110 Compare the electrons accelerated through a certain potential difference and protons accelerated through the same potential difference. If initial velocities are negligible, then the emergent:
A) Electrons have smaller K.E
C) Electrons have larger momentum
B) Protons have larger velocity
D) Protons have larger momentum
Q. 111 A charge of 5 C is given a displacement of $\mathbf{0 . 5 \mathrm { m }}$ and work-done in the process is $\mathbf{1 0} \mathrm{J}$. The difference of potential between two points is:
A) 2 V
B) 1 V
C) 0.25 V
D) 4 V
Q. 112 Two charges $2 \mu \mathrm{C}$ and $10 \mu \mathrm{C}$ separated by 20 cm , the ratio of electrical forces acting on them will be:
A) $1: 2$
B) $1: 1$
C) $1: 5$
D) $5: 1$
Q. 113 The electrostatic force between charges is 42 N . If we place a dielectric of $\epsilon_{r}=2.1$ between the charges, then the force become equal to:
A) 42 N
B) $\mathbf{2 0} \mathbf{N}$
C) 88.2 N
D) 2 N
Q. 114 The electric field strength and electric field lines between two oppositely charged parallel plates is/are:

A) Uniform, Parallel and evenly spaced
C) Zero, No lines exist
B) Non-Uniform, Parallel and evenly spaced
D) Non-Uniform, Curved
Q. 115 The electric potential at a point of distance 1 m from $2 \mu \mathrm{C}$ charge is:
A) $1.8 \times 10^{6} \mathrm{~V}$
B) $1.8 \times 10^{4} \mathrm{~V}$
C) $1.8 \times 10^{6} \mathrm{~N} / \mathrm{C}$
D) $1.8 \times 10^{5} \mathrm{~N} / \mathrm{C}$

