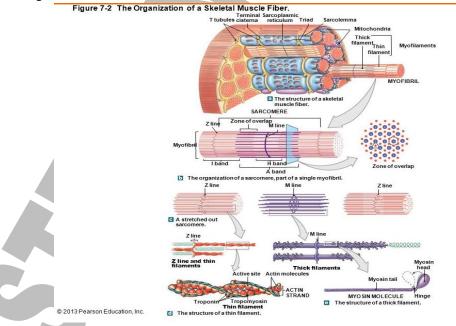


Page 1 of 9

Q.4	Cytoplasm of the muscle is known as: A) Axoplasm B) Sarcoplasm	C) Sarcolemma D) Protoplasm	
	Explanation: Cytoplasm of the muscle is known as sarco	plasm.	
Q.5	The cytoplasm of the muscle cell contains large A) Glycogen, myosin B) Glycogen, hemoglobin	amount of stored and: C) Starch, myoglobin D) Glycogen, myoglobin	
2 2	Explanation: The cytoplasm of the muscle cell contains large amount of stored glycogen and myoglobin.		
Q.6	Overlapping of thick and thin filaments occurs in:		
	A) I-band B) A-band	C) M-band D) Z-band	
	Explanation: Overlapping of thick and thin filaments occurs in A-band.		
Q.7	Which one of the following changes occur when skeletal muscle contracts?		
	A) I-band shortens onlyB) A band shortens and Z-lines moves further apar	C) I-band shortens and Z-lines get closer t D) Actin filament contracts	
	Explanation:	a slide next the thick and's so that actin and	


According to this theory, the thin filaments slide past the thick one's so that actin and myosin filaments overlap to greater degree. Thus, the Z-line is brought closer together, I-band shortens, the H zone disappears.

Which one of the follow	ing part of sarcome	re is isotropic?
A) I band		C) H zone

11	-	Juna	
B)	A	band	

C) H zone D) Z line

Explanation:

Q.9It is a red pigment that stores oxygen in muscle cell:
A) HemoglobinC) Myosin
D) ActinB) MyoglobinD) ActinMDCAT TEST # 4

YOUR STEP TOWARDS A BRIGHTER FUTURE!

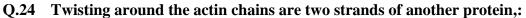
	Explanation: The pigment which stores oxygen in muscles is myoglobin.		
Q.10	Pick the diameter of a myofibril:		
	A) 10-100 μm B) 1-2 μm	C) 16-18 µm D) 7-8 µm	
	b) 1-2 μm	D) 7-8 µm	
	Explanation:		
	$1-2 \ \mu m$ is the diameter of myofibril.		
Q.1 1			
<u>ک</u>	A) A-band of sarcomere	C) H-band of sarcomere	
	B) I-band of sarcomere	D) M-line of sarcomere	
77	Explanation:		
	I-band of sarcomere cannot polarize visibl	e light.	
Q.12	2 When muscle fibre contracts all of the followin	g events occur, EXCEPT?	
\square	A) Z-line is brought closer	C) H-zone disappears	
ĥ	B) I-band shortens	D) A-band shortens	
	Explanation:		
	When muscle fibre contracts A-band short	ens event does not occur.	
Q.1 3	Generally, each end of the entire skeletal musc	le is attached to bone by:	
	A) Ligament	C) Tendon	
\bigcirc	B) Sarcomere	D) Collagen	
	Explanation: Myofibril consists of many thread like stru	actures called myofilaments.	
$\nabla_{Q.14}$	Q.14 These muscles are primarily involved in locomotory actions and changes of body postu		
	A) Smooth	C) Skeletal	
N	B) Cardiac	D) Unstriped	
M	Explanation:		
\bigcirc		in locomotory actions and changes of body	
	postures.		
Q .15	It extends the entire length of the A-band of same		
\bigcirc	A) Actin filamentsB) Central thick filament	C) Thin filamentsD) Thin and thick filaments	
	Explanation: Central thick filament extends the entire length of the A-band of sarcomere.		
Q.16 Sarcomeres are part of:			
X	A) Muscle fibres	C) Myofilaments	
	B) Myofibrils	D) Myonemes	
Explanation:			
Q.17	out contraction: also called microfilaments		
Q.17	Q.17 A structural protein that with myosin carries out contraction; also called microfilamen is:		
	A) Fibrin	C) Actin	
MDC	AT TEST # 4	Page 3 of 9	

B) Troponi	n
------------	---

D) Tropomyosin

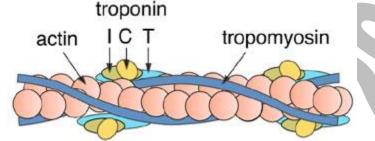
Explanation:

A structural protein that with myosin carries out contraction; also called microfilaments is actin. (**Glossary**)


Q.18 Cyclic activity of cross bridges is regulated by: A) Ca^{+2} ions C) Troponin B) ATP D) Actin **Explanation:** Cyclic activity of cross bridges is regulated by ATP. 0.19 The thick filament is about _____ nm in diameter: Q.20 Q.20 Q.21 Q.22 Q.22 C) 10 A) 8 **B**) 7 **D) 16 Explanation:** The thick filament is about 16 nm in diameter. Cross bridges are the lateral processes (projection) on: A) Actins C) Troponins B) Tropomyosins **D)** Myosins **Explanation:** Cross bridges are the lateral processes (projection) on myosins. When cross bridges contract they pull the actin filament towards the? A) Centre of the sarcomere C) Right side of the sarcomere B) Ends of the sarcomere D) Left side of the sarcomere **Explanation:** When cross bridges contract they pull the actin filament towards the centre of the sarcomere. Stiffening of body due to lack of ATP is called: A) Tetany **C) Rigor mortis** B) Cramp D) Tetanus **Explanation:** Stiffening of body due to lack of ATP is called rigor mortis. 0.23 tail consists of two long polypeptide chains coiled together: A) Troponin C) Actin B) Tropomyosin D) Myosin

Explanation:

Myosin tail consists of two long polypeptide chains coiled together.



- A) Troponin
- **B)** Tropomyosin

C) Myosin D) Myoglobin

Explanation:

Twisting around the actin chains are two strands of another protein, tropomyosin.

T-tubule and the terminal portion of the adjacent envelope of sarcoplasmic reticulum form: A C) H-zone

A)	Z-nne	
B) '	Triads	

D) T-system

Explanation:

T-tubule and the terminal portion of the adjacent envelope of sarcoplasmic reticulum form triads.

- PRACHER COPY 2 The sarcolemma of muscle fibre folds inwards and forms a system of tubes running through the sarcoplasm which is called:
 - A) Myofilament

B) Sarcoplasmic reticulum

C) Z-lines **D)** Transverse tubules

Explanation:

The sarcolemma of muscle fibre folds inwards and forms a system of tubes running through the sarcoplasm which is called transverse tubules.

When more energy is required in muscle contraction then that energy can also be produced by?

A) Glucose **B)** Creatine phosphate C) Glycogen D) Lactic acid

Explanation:

When more energy is required in muscle contraction then that energy can also be produced by phosphocreatine as a secondary source.

Lactic acid accumulation in skeletal muscles causes: Q.28

A) Muscle fatigue	C) Atrophy
B) Tetany	D) Cramp

Explanation:

Lactic acid accumulation in skeletal muscles causes muscle fatigue. (Page 41)

Complete immobilization of muscle leads to: Q.29

A) Muscle fatigue	C) Cramp
B) Muscle atrophy	D) Tetany

Explanation:

Complete immobilization of muscle leads to muscle atrophy.

The amount of work a muscle does is reflected in changes in the muscle itself. When muscles are used actively, they increase in size or strength and become more efficient and fatigue resistant. Aerobic exercises such as swimming, jogging, and fast walking result in several changes in skeletal muscles. Capillaries surrounding the muscle fibres, as well as mitochondria within them increase in number and fibre synthesizes more myoglobin. These changes result in more efficient muscle metabolism and resitance to fatigue. Complete immobilization of muscle leads to muscle weakness and severe atrophy.

These muscle fatigue. muscle severe

Skeletal muscles are:

- A) Unstriped
- **B)** Voluntary

Explanation:

Skeletal muscles are consciously controlled and therefore they are called voluntary muscles.

1 Which ion is essential for muscle contraction?

A) SodiumB) Calcium

C) Potassium D) Magnesium

C) Involuntary D) Earliest

Explanation:

Calcium ions are essential for muscle contraction.

2 Sliding filament theory can be best explained as:

A) Actin and myosin filaments do not shorten but rather slide pass each other

B) When myofilaments slide pass each other, myosin filaments do not shorten

C) When myofilaments slide pass each other actin filaments shorten while myosin filaments do not shorten

D) Actin and myosin filaments shorten and slide pass each other

Explanation:

During muscle contraction, the laterally projecting heads (cross bridges) of the thick myosin myofilaments come in contact with the thin actin myofilaments and rotate on them. This pulls the thin myofilaments toward the middle of the sarcomere, past the thick myofilaments. The Z lines come closer together and the sarcomere becomes shorter. Length of the A band remains constant. Myofilaments (both actin and myosin) stay the same length. Free ends of actin myofilaments move closer to the centre of the sarcomere, bringing Z lines closer together. I bands shorten and H zone narrows. A similar action in all the sarcomeres results in shortening of the entire myofibril and thereby of the whole fibre and the whole muscle.

Q.33 What is sarcomere?

A) Part between two H-linesB) Part between two A-lines

C) Part between two I-bands D) Part between two Z-lines

Explanation:

A striated muscle fibre is bounded by sarcolemma. It shows alternating dark and light cross bands, the striations. Dark band is called A band which has at its middle a light zone termed H zone. Light band is known as I band which is crossed through its centre by a dark membrane **MDCAT TEST # 4 Page 6 of 9**

called Z line. ffe part of the muscle fibre between two successive Z lines functions as a contractile unit called sarcomere.

Q.34	Immediate source of energy for muscle contract		
	A) ATP B) Glucose	C) Creatine phosphate D) Sucrose	
	Explanation:		
	Immediate source of energy for muscle contraction is ATP.		
Q.35	In skeletal muscle under anaerobic conditions ATP can be generate by:		
\$	A) Krebs cycle B) ETC	C) Glycolysis D) Pyruvic acid oxidation	
	Explanation:		
	In skeletal muscle under anaerobic condition	ons ATP can be generate by glycolysis.	
Q.36	The contraction of each muscle fiber is based on		
\bigcirc	A) All or none principleB) All or one principle	C) All or two principle D) All or three principle	
	Explanation:		
	The contraction of each muscle fiber is bas	ed on all or none principle.	
Q.37	Sarcoplasmic reticulum is continuous system of sarcoplasm around the:	of sarco-tubules extending throughout the	
	A) Muscle fibers	C) Myofibrils	
\bigcirc	B) Sarcomere	D) Thick filaments	
\bigcirc	Explanation: Sarcoplasmic reticulum is continuous syste	em of sarco-tubules extending throughout the	
	sarcoplasm around the myofibril.	en of sureo tubules extending unoughout the	
Q.38	When muscles are used actively, capillaries s		
	mitochondria within them increase in number a A) Glycogen	C) Hemoglobin	
	B) Calcium	D) Myoglobin	
\bigcirc	Explanation:	as surrounding the neurole fibres, as well as	
M	mitochondria within them increase in number and	es surrounding the muscle fibres, as well as fiber synthesizes more myoglobin.	
$\bigcirc_{Q.39}$	Triceps and biceps are examples of:		
	A) Smooth musclesB) Skeletal muscles	C) Cardiac muscles D) Antagonistic muscles	
	Explanation:		
	Triceps and biceps are examples of antago	nistic muscles.	
Q.40	Each light band of sarcomere is called:		
	A) A band B) I band	C) H zone D) Z line	
	Explanation:		
	Each light band of sarcomere is called I ban	nd.	
Q.41	Term Zwishen stands for:		
MDCA	A) Bright T TEST # 4	C) Top Page 7 of 9	

YOUR STEP TOWARDS A BRIGHTER FUTURE!

	B) Between	D) Bottom			
	Explanation: Term Zwishen stands for between.				
Q.42	Myofilament is made up of:				
	A) Actin filament onlyB) Thick filament only	C) Thin filament onlyD) Thick and thin filament both			
	Explanation: Myofilament is made up of thick and thin f	ilament both.			
_€ Q.43					
	A) Insertion	C) Belly			
	B) Origin	D) Tendon			
	Explanation: Origin is the end of muscle which remain f	ixed when muscle contracts.			
Q.44	The actin molecule has chains:				
	A) Two	C) Four			
	B) Three	D) Five			
	Fundanction				
	Explanation: The actin molecule has two chains.				
Q.45	When muscle is required to contract calcium io	ns bind with?			
	A) Actin	C) Troponin			
	B) Myosin	D) Tropomyosin			
	Explanation: When muscle is required to contract calciu	m ions bind with troponin.			
Q.46	is needed to break the link between the myosin bridge and the actin:				
	A) NAD	C) Calcium			
	B) ATP	D) Myoglobin			
	Explanation: ATP is needed to break the link between the	e myosin bridge and the actin.			
Q.47	Sarcolemma is present around:				
$\overline{\mathbf{O}}$	A) Myofilament	C) Muscle cell			
	B) Myofibril	D) Muscle bundle			
	Explanation: Sarcolemma is present around myofibril.				
Q.48	Once the myosin head has become attached to the filament, ATP is hydrolyzed:				
C	A) Tropomyosin	C) Actin			
	B) Thin	D) Troponin			
	Fundamentiant				
	Explanation: Once the myosin head has become attached to the actin filament, ATP is hydrolyzed.				
Q.49	It refers to a condition of the body after death,	• •			
	A) Cramp B) Tetany	C) Rigor mortis D) Spasm			
	B) Tetany	יע spasin			
MDCA	T TEST # 4	Page 8 of 9			

Explanation:

Rigor mortis refers to a condition of the body after death, which is characterized by stiffness of body.

Q.50 Stimulation of a muscle fiber by a motor neuron occurs at:

A) The neuromuscular junctionB) The transverse tubules

C) The myofibrilD) The sarcoplasmic reticulum

Explanation:

A neuron that transmits a stimulus to muscle tissue is called motor neuron. A motor unit consists of a single motor neuron (nerve cell) and the muscle fibres it innervates. The portion of the muscle plasma membrane (sarcolemma) that lies beneath the nerve endings (axon terminals) is called the motor end plate. The axon terminals and the motor end plate together constitute the neuro-muscular junction or neuromotor junction.

MDCAT TEST # 4