

Q.54 Q.54

ENTRANCE TEST – 2020 MDCAT – CHEMISTRY

TEST # 06 UHS TOPIC – 3 + 4 (Organic Chemistry) TOPIC: ALKYL HALIDES, ALCOHOLS AND PHENOLS

**Which one of the following is nucleophilic substitution reaction (NSR)? Q.51

A)
$$CH_4 + HONO_{2(conc.)} \xrightarrow{450^{\circ}C} CH_3 - NO_{2(conc.)}$$

A)
$$CH_4 + HONO_{2(conc.)} \xrightarrow{450^{\circ}C} CH_3 - NO_2 + H_2O$$

B) $H_2C = CH_2 + Br_2 \xrightarrow{CC14} H_2C(Br) - CH_2(Br)$

$$\mathbf{C})\,\mathbf{H}_{3}\mathbf{C}-\mathbf{C}\mathbf{H}_{2}-\mathbf{N}\mathbf{H}_{2}+\mathbf{H}\mathbf{C}\mathbf{1}_{(\mathrm{dil.})} \longrightarrow \mathbf{H}_{3}\mathbf{C}-\mathbf{C}\mathbf{H}_{2}-\overset{\scriptscriptstyle{+}}{\mathbf{N}}\,\mathbf{H}_{3}\overset{\scriptscriptstyle{-}}{\mathbf{C}}\mathbf{1}$$

$$\mathbf{D}) \, \mathrm{CH}_3 - \mathrm{CH}_2 - \mathrm{Br} + \mathrm{OH} \quad \longrightarrow \qquad \mathrm{H}_3 \mathrm{C} - \mathrm{CH}_2 - \mathrm{OH} + \mathrm{Br}$$

**Rectified spirit contains alcohol about? Q.52

A) 80%

C) 90%

B) 85%

D) 95%

Q.53 **Which of the following statement does not match correctly?

Opt.	Reagent / State	Ethanol	Phenol
A)	State at room temperature	Liquid	Solid
B)	Organic acid (CH ₃ COOH)	Ethyl ethanoate (an ester) is formed	No reaction
C)	Br ₂ , H ₂ O	No reaction	White ppt.
D)	Conc. H ₂ SO ₄	Dehydration \rightarrow only ether is formed	No reaction

Answer Explanation: (D)

Opt	Reagent / State	Ethanol	Phenol
(D)	Conc. H ₂ SO ₄	Dehydration → ethene or ether formed	Sulplonation → HOC ₆ H ₄ SO ₃ H

**Which of the following has higher boiling point?

A)
$$CH_3 - CH_2 - CH_2 - CH_2 - Br$$

C)
$$CH_3 - CH - CH_2 - CH_2 - OH$$

OH

B)
$$CH_3 - CH_2 - CH_2 - CH_2 - OH$$

Answer Explanation: (C)

- The boiling point is greatly influenced by
 - (i) The extent of hydrogen bonding
 - (ii) Atomic mass of the substituent group
 - (iii) The molecular mass of the compound
- The molecules (A), (B) and (C) have the same number of carbon atoms in their chains. The molecule (A) has a bromine atom as a substituent.
- The molecule (B) has only one OH group.
- The molecule (C) has two hydroxyl groups. Therefore, the molecule (C) will have boiling point higher than the molecule (B), and molecule (B) will have boiling point higher than the molecule
- The molecule (A) has higher molar mass (larger chain), and a bromine atom, while molecule (D) has short chain, and a Cl atom as the substituent. Therefore, the boiling point of molecule (A) is higher than that of the molecule (D).

The expected order of increasing boiling point is,

Molecule(D) < Molecule(A) < Molecule(B) < Molecule(C)

**Which of these molecular formulas represent the first three Q.55

members of the alcohol family?

A) C_2H_5OH , C_3H_7OH , C_4H_9OH

C) C₂H₄OH, C₂H₆OH, C₃H₈OH

B) CH₃OH, C₂H₅OH, C₃H₇OH

D) HOH, CH₃OH, C₂H₅OH

$$CH_3 - CH_2 - CH_2 - Br \xrightarrow{X} Product \xrightarrow{Y} CH_3 - CH - CH_3$$

$$Br$$

In the above transformations 'X' and 'Y' stand for conditions

- A) X = dilute aqueous NaOH, 20°C; Y = HBr/acetic acid, 20°C
- B) X = concentrated alcoholic NaOH, 80°C; Y = HBr/acetic acid, 20°C
- C) X = dilute aqueous NaOH, 20°C; Y = Br₂/CHCl₃, 0°C
- D) X = concentrated alcoholic NaOH, 80°C; Y = Br₂/CHCl₃, 0°C

Answer Explanation: (A)

Q.57 **Chloroethane is converted into a carboxylic acid containing one more carbon atom through a two stage process.

Which of the following compounds could be the intermediate in the synthesis of the carboxylic acid?

A) CH₃CH₂OH

C) CH₃CH₂CH₂NH₂

B) CH₃CH₂CN

D) CH₃CH₂CO₂CH₃

Answer Explanation: (B)

The following compound propane nitrile (CH₃-CH₂-CN) is the intermediate in the synthesis of carboxylic acid.

(i)
$$CH_3 - CH_2 - Cl + NaCN \longrightarrow CH_3 - CH_2 - CN + NaCl$$

Propane nitrile

(ii)
$$CH_3 - CH_2 - CN + H_2O \xrightarrow{\text{(dil. HCl)}} CH_3 - CH_2 - COOH + NH_4Cl$$

Proanoic acid

- Q.58 **Which of these equations correctly represents the fermentation of glucose?
 - A) $C_6H_{12}O_6$ (aq) $\rightarrow C_2H_5OH$ (aq) $+ 2CO_2$ (g)
 - B) $C_6H_{12}O_6$ (aq) $\rightarrow 2C_2H_5OH$ (aq) $+4CO_2$ (g)
 - C) $C_6H_{12}O_6$ (aq) $\rightarrow 2C_2H_5OH$ (aq) + $2CO_2$ (g)
 - D) $C_6H_{12}O_6$ (aq) $\rightarrow C_2H_5OH$ (aq) + $4CO_2$ (g)
- Q.59 **Identify the incorrect statement about phenol.
 - A) It is colourless crystalline hygroscopic solid
 - B) It is poisonous in nature
 - C) It is used as a disinfectant in hospitals and washrooms
 - D) It is sparingly soluble in water
- Q.60 **Consider the following reaction of alcohol:

$$\begin{array}{c} \mathbf{O} \\ \parallel \\ \mathbf{H}_{3}\mathbf{C} - \mathbf{C}\mathbf{H}_{2} - \mathbf{O}\mathbf{H} + \left[\mathbf{O}\right] \xrightarrow{\mathbf{K}_{2}\mathbf{C}\mathbf{r}_{2}\mathbf{O}_{7}} \rightarrow \mathbf{C}\mathbf{H}_{3} - \mathbf{C} - \mathbf{H} + \mathbf{H}_{2}\mathbf{O} \end{array}$$

In the above reaction ethanol can act as:

A) Reducing agent only

C) Both A and B

B) Oxidizing agent only

D) Neither A nor B

Answer Explanation: (A)

In the following given reaction, ethanol acts as a reducing agent

$$H_{3}C-CH_{2}-OH+\left[O\right] \xrightarrow{K_{2}Cr_{2}O_{7}} CH_{3}-C-H+H_{2}O$$

Reducing agent Oxidizing agent

Oxidation no. of C (-II)

Oxidation no. of C (-I)

Note: Ethanal boiling point ($T_b = 294 \text{ k}$) vaporizes as soon as it is formed. It is distilled immediately in order to avoid further oxidation to ethanoic acid.

Q.61 **Under identical conditions, even though it proceeds by the same mechanism, reaction 1 is faster than reaction 2.

Reaction 1: $CH_3CHBrCH_3 + NaCN \longrightarrow CH_3CH(CN)CH_3 + NaBr$

Reaction 2: $CH_3CHBrCH_3 + NaI \longrightarrow CH_3CHICH_4 + NaBr$

What factor will explain this result?

- A) The C I bond is a stronger bond than the C Br bond
- B) The C N bond is a stronger bond than the C I bond
- C) The cyanide ion is a stronger nucleophile than the iodide ion
- D) The cyanide ion is a weaker nucleophile than the iodide ion.

Answer Explanation: (C)

In the above given reactions

- Reaction 1 is faster than reaction 2 because
- The cyanide ion is a stronger nucleophile than the iodide ion
- Q.62 Which of the following reagents produces picric acid by the reaction with phenol?

A) Br₂ /water

C) Conc. HNO₃

B) dil. HNO₃

D) CH₃ – Cl

Answer Explanation: (C)

Picric acid is produced by the reaction of phenol with conc. HNO₃ as shown in the reaction.

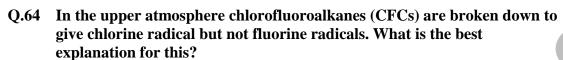
Characteristic features of picric acid:

- "Trinitrophenol (picric acid), Wetted, with not less than 10% water by mass" is a yellow mass of moist crystals or a slurry.
- An explosive, but wetting lowers the risk of detonation.
- Used in synthesis of dyes, as a drug, to manufacture explosives and matches, to etch copper and to make colored glass.
- Q.63 Which of the following is not SN reaction?

A)
$$CH_3 - CH_3 - Br + OH^- \longrightarrow H_3C - CH_2 - OH + Br^-$$

B)
$$CH_3 - CH_2 - Br + CH_3O^- \longrightarrow CH_3 - CH - O - CH_3$$

C)
$$CH_3 - CH_2 - Br + NH_3 \longrightarrow CH_3 - NH_2 + HBr$$


$$D) \ CH_3 - CH_2 - Cl + Zn + \underbrace{HCl_{(aq.)} \xrightarrow{\it ether} CH_3 - CH_3 + ZnCl_2}$$

Answer Explanation: (D)

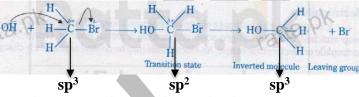
It is not SN reaction. Alkyl halides can be reduced with zinc in the presence of an aqueous acid such as HCl or CH₃COOH.

$$CH_3 - CH_2 - Cl + Zn + HCl_{(aq.)} \xrightarrow{ether} CH_3 - CH_3 + ZnCl_2$$

MDCAT TEST # 06

- A) Fluorine is more electronegative than chlorine
- B) Fluorine radicals are less stable than chlorine radicals
- C) The C F bond is stronger than the C Cl bond
- D) The chlorine atom is larger in size than the fluorine atom

Answer Explanation: (C)


In the upper atmosphere chlorofluoroalkanes (CFCs) are broken down to give chlorine radical but not fluorine radicals. The best explanation for this is the C-F bond is stronger than the C-Cl bond i.e. C-F bond energy is greater than that of C-Cl bond as shown below:

Bond	C – F	C – H	C – Cl	C – Br	C – I
Bond energy (kJmol ⁻¹)	467	413	346	290	228

- Q.65 During S_N2 reaction, configuration of the alkyl halide molecule:
 - A) Remains same
 - B) Depends on the Electronegativity of halogen
 - C) Depends upon the carbon-atom
 - D) Gets inverted

Answer Explanation: (D)

During $S_N 2$ reaction, configuration of the alkyl halide molecule gets inverted as shown in the reaction.

- Q.66 Which of the following is not use of chloroform (CHCl₃)?
 - Chloroform is used:
 - A) As an anaesthetic substances
 - B) As a solvent form fats, waxes and resins
 - C) As a preservative for anatomical specimens
 - D) As an antiseptic

Answer Explanation: (D)

It is incorrect statement in fact idoform is used as an antiseptic substance.

- Q.67 Which of the followings is good nucleophile as well as good leaving group?
 - A) OH

C) NH₂

B) I-

D) OR

Answer Explanation: (B)

I⁻ (iodide ion) is good nucleophile as well as good leaving group.

- Q.68 Which of the following type of reaction is shown by phenol?
 - A) Reaction due to -OH group only

C) Both A and B

B) Reaction due to benzene ring only

D) Neither A nor B

Answer Explanation: (C)

The following type of reactions are shown by phenol.

- Due to -OH group
- Due to benzene ring
- Q.69 Which of the following is correct order of ease of S_N1 reaction shown by alkyl halide?
 - A) $(R)_2CHX > CH_3X > (R)_3C-X > RCH_2X$
 - B) $CH_3X > RCH_2X > (R)_2CHX > (R)_3C-X$
 - C) $(R)_2CHX > (R)_3C-X > RCH_2X > CH_3X$
 - D) $(R)_3C-X > (R)_2CHX > RCH_2X > CH_3X$

Answer Explanation: (D)

The correct order of ease of S_N1 reaction shown by alkyl halides is as follow: $(R)_3C-X>(R)_2CHX>RCH_2X>CH_3X$

- Q.70 The relative strength of phenol, water, ethanol and carboxylic acid has the following order of increasing acid strength:
 - A) Carboxylic Acid > Phenol > Ethanol > Water
 - B) Carboxylic Acid > Phenol > Water > Ethanol
 - C) Phenol > Carboxylic Acid > Ethanol > Water
 - D) Water > Ethanol > Phenol > Carboxylic Acid

	Answer Explanati	on: (B)
Name of compounds		K _a (moldm ³)
Carboxylic acid e.g. (CH ₃ COOH)		1.7 x 10 ⁻⁵
Phenol		1.3 x 10 ⁻¹⁰
Water		10-16
Ethanol		10-18

- Which of the following is correct order of acidic strength of different Q.71 types of alcohols?
 - A) $3^{\circ} > 2^{\circ} > 1^{\circ}$

C) $2^{\circ} > 1^{\circ} > 3^{\circ}$

B) $1^{\circ} > 2^{\circ} > 3^{\circ}$

D) $3^{\circ} > 1^{\circ} > 2^{\circ}$

Answer Explanation: (B)

Correct order of acidic strength of different types of alcohols is as follow:

1º alcohol > 2º alcohol > 3º alcohol

- Q.72 Which of the following mechanism of reaction is shown by alcohol when C-O bond is broken?
 - A) Electrophilic substitution reaction
- C) Acid base reaction
- B) Nucleophilic substitution reaction
- D) Redox reaction

Answer Explanation: (B)

Nucleophilic substitution reaction is shown by alcohol when C – O bond is broken as shown in the reaction:

$$CH_3 - CH_2 - OH + SOCl_2 \xrightarrow{Pyridine} CH_3 - CH_2 - Cl + SO_2 + HCl$$

In this reaction OH nucleophile is displaced by Cl nucleophile.

Q.73 Consider the following structural formula of alkyl halide:

 ${\rm CH_3}$ ${\rm CH_3}$ ${\rm CH_3}$ The correct name of the above structure according to IUPAC is:

- A) 4-Bromo-2,3-dimethyl pentane
- B) 2-Bromo-2,3-dimethyl pentane
- C) 2-Bromo-3,4-dimethyl pentane
- D) 4-Bromo-3,3-dimethyl pentane

Answer Explanation: (C)

The correct name of the given structure according to IUPAC is 2-Bromo-3,4-dimethyl pentane

- A compound "X" has molecular formula C4H10O, and is unreactive **O.74** towards acidified K₂Cr₂O₇ and its elimination takes place:
 - A) CH₃-CH₂-CH₂-CH₂-OH

C) CH₃-CH₂-CH(OH)-CH₃

B) (CH₃)₂-CH-CH₂-OH

D) (CH₃)₃COH

Answer Explanation: (D)

(CH₃)₃COH is a compound 'X' which has molecular formula C₄H₁₀O and is unreactive towards acidified potassium dichromate. It shows **β-elimination reaction as shown in the reaction:**

$$\begin{array}{c} CH_3 \\ CH_3 - C - OH & \xrightarrow{K,Cr,O.} CH_3 - C - CH_3 + H.O \\ CH_3 & CH_3 \\ 2\text{-Methyl-2-Propanol} & 2\text{-Methyl-propenc} \end{array}$$

General formula of alcohol is:

- C) $C_nH_2n_{+1}O$
- D) C_nHn₋₂O

Answer Explanation: (B)

General formula of alcohol is C_nH₂n+2O.

Methanol and ethanol are soluble in water due to:

A) Their acidic character

C) Hydrogen bonding

B) Dissociation in water

D) Alkyl group

Answer Explanation: (C)

Methanol and ethanol are soluble in water due to hydrogen bonding. Solubility of alcohol decreases with the increase of carbon atom as shown in the tabular form:

tabulai ioiiii		
Name	Formula	Solubility/g per 100g of water
Methanol	CH ₃ – OH	Infinite
Ethanol	CH3 - CH2 - OH	Infinite
Propan-1-ol	$CH_3 - (CH_2)_2 - OH$	Infinite
Butan-1-ol	$\mathbf{CH_3} - (\mathbf{CH_2})_3 - \mathbf{OH}$	8.0
Pentan-1-ol	$CH_3 - (CH_2)_4 - OH$	2.7
Hexan-1-ol	$CH_3 - (CH_2)_5 - OH$	0.6

Q.77 Which of the following is the most reactive alcohol when bond is to be broken between carbon and oxygen?

A) CH₃-OH

C) R₂CHOH

B) R-CH₂-OH

D) R₃COH

Answer Explanation: (D)

R₃COH is the most reactive alcohol when bond is to be broken between carbonand oxygen. The order of reactivity of alcohols when C - O bond breaks.

Tertiary alcohol > Secondary alcohol > primary alcohol

R₃COH

> R₂CHOH

> RCH₂OH

Q.78 Bakelite is first synthetic plastic and it is prepared by the reaction of following two monomers:

- A) Propanone and benzyle alcohol
- C) Ethanal and phenol

B) Methanal and phenol

D) Methanol and phenol

Answer Explanation: (B)

Halo-alkanes can be converted into higher alkanes by: Q.79

- A) Kolbe's electrolytic method
- C) Hydrolysis reaction

B) Wurtz's reaction

D) Redox reaction

Answer Explanation: (D)

Halo-alkanes can be converted into higher alkanes by Wurtz's reaction as shown below:

$$2CH_3 - CH_2 - CI + 2Na \xrightarrow{Ether} CH_3 - CH_2 - CH_2 - CH_3 + 2NaCI$$

The Wurtz reaction, named after Charles-Adolphe Wurtz, is a coupling reaction in organic chemistry, organometallic chemistry and recently inorganic main group polymers, whereby two alkyl halides are reacted with sodium metal in dry ether solution to form a higher alkane:

$$2R-X + 2Na \xrightarrow{\text{Ether}} R-R + 2NaX$$

Other metals have also been used to effect the Wurtz coupling, among them silver, zinc, iron, activated copper, indium and a mixture of manganese and copper chloride.

Limitations

- The Wurtz's reaction is limited to the synthesis of symmetric alkanes. If two dissimilar alkyl halides are taken as reactants, then the product is a mixture of alkanes that is often difficult to separate by fractional distillation.
- Methane cannot be obtained by this method. This type of reaction fails in case of tertiary halides.
- Q.80 Which of the following compounds is used as a refrigerant?

A) CCl₄

C) CH₂Cl₂

B) CHCl₃

D) CF₂Cl₂

Answer Explanation: (D)

Dichlorodifluoromethane (CF₂Cl₂) is used as a refrigerant inside fridges.

Q.81 Which of the following is comparatively a poor leaving group?

A) Cl

C) I⁻

B) Br

D) F-

Answer Explanation: (D)

F is comparatively a poor leaving group.

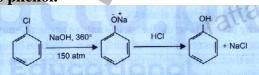
Good leaving group	Poor leaving group
They have Less electronegativity	They have more electronegativity
And more polarizability	And less polarizability
Cl ⁻ , Br ⁻ , I ⁻ and HSO ₄ ⁻	OH-, O-R and NH ₂ -, F-

Q.82 Sodium phenoxide on treating with hydrochloric acid yields?

A) Benzene

C) Phenol

B) Benzoic acid


D) Benzaldehyde

Answer Explanation: (C)

Sodium phenoxide on treating with hydrochloric acid yields phenol as shown in the reaction.

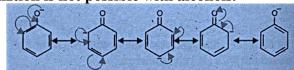
Dow's method:

In this method chlorobenzene is treated with 10% NaOH at 360°C and 150 atmosphere pressure. Sodium phenoxide is produced which on treating with HCl gives phenol.

RIKING INFORMATIONS

Q.83 The acidity of phenol is due to its _____:

A) Nature of benzene


C) Nature of phenoxide

B) Double bond in benzene ring

D) Hydroxal group

Answer Explanation: (C)

- Phenol is much more acidic than ethanol its (Ka) value is 1.3×10^{-10} .
- The reason why phenol is acidic in nature lies in the nature of phenoxide.
- The negative charge on the oxygen atom can become involved with the pi electron cloud on the benzene ring.
- The negative charge is thus delocalized in the ring and the phenoixde ion becomes relatively stable.
- This type of delocaliztion is not possible with alcohols.

In which of the following reactions of phenol, white precipitate are **Q.84** obtained as a result of reaction?

(o-nitrophenol) (p-nitrophenol)

C)
$$\xrightarrow{\text{OH}} + 3\text{Br}_2 \xrightarrow{\text{water}} \xrightarrow{\text{OH}} \xrightarrow{\text{Br}} + 3\text{HBr}$$
 (2,4,6-tribromophenol)

D)
$$+3H_2 \xrightarrow{N_1 \atop 150^{\circ}C}$$
 OH

Answer Explanation: (C)

In the reaction of phenol with bromine/water white ppt. are obtained as shown in the reaction:

OH
$$Br$$
 Br Br $+ 3HBr$ $(2,4,6-tribromophenol)$

In the below reaction, the configuration of product is:

$$H = H - C - Br - HO - C - H + Br$$

$$H = H - C - Br - HO - C - H + Br$$

- A) 100% same of the configuration of reactant
- C) 50% retained
- B) 100% opposite from configuration of reactant D) 50% inverted

Answer Explanation: (B)

In the above reaction, the configuration of product is 100% opposite from configuration of reactant.