If both recessive alleles are present on respective homologous chromosomes, then the individual will be:

0	A :
	Heterozygous

O B: Heterozygous recessive

O C:
Homozygous recessive

O D: Homozygous dominant

Genetic make-up of a trait is called:

O A: Phenotype
O B: Genotype
O C: Genome
O D : Gene pool

In Mendel's monohybrid cross what percentage of round seed plants were produced by F_2 heterozygous round on self-fertilization?

O A: 25%	
O B: 50%	
O C: 75%	
O D: 100%	

A test cross is conducted to determine:

0	A : Genotype of a dominant phenotype
0	B : Genotype of a recessive phenotype
0	C : Phenotype of a dominant genotype
0	D : Phenotype of a recessive genotype

If a trait is controlled by two or more than two genes, then such genes are called as:

0	A:
	Multiple alleles

- O B:
 Pleiotropic genes
- O C: Polygenes

O D:
Continuously varying traits

Which of the following is true about alleles?

O A:

They occupy different loci on same chromosome

O B:

They occupy same loci on different homologue

O C:

They occupy different loci on same homologue

O D:

They occupy same loci on respective homologue

An organism with two identical alleles for a trait is called:

- O A: Heterogenous
- O B: Homozygous
- O C: Co-dominant

O D: Dominant

Seed shape in pea plant is:

0	A : Trait
0	B : Phenotype
0	C : Genotype
0	D : Genome

Dominance is physiological effect of an allele over its partner allele occupying:

Same locus on same chromosome В: Same locus on respective homologue Different locus on same chromosome

Different locus on respective homologue

	is the basic unit of biological information:
0	A : Gamete
0	B: Chromosome
0	C: DNA
0	D : Gene

Which of the following depicts the Mendel's dihybrid ratio?

O A:

3:1

O B:

9:3:3:1

O C:

9:7

O D:

15:1

Submit Quiz

In dihybrid cross, out of 16 plants obtained, the number of genotypes will be:

O A:

4

O B:

9

O C:

16

O D:

12

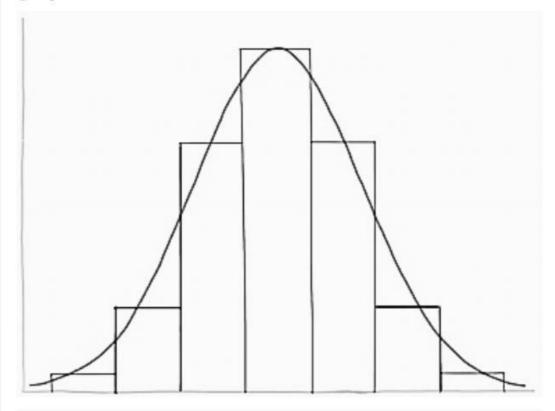
is a physiological effect of an allele over its partner allele on same gene locus.	
0	A : Epistasis
0	B: Dominance
0	C : Bombay phenotype
0	D : Gene linkage

Eye colour in heterozygous Drosophila with genotype w⁺w is an example of:

0	A:
	Complete dominance

O B: Incomplete dominance

Co-dominance


Over dominance

Submit Quiz

Intelligence is an example of:

0	A: Dominance
0	B : Pleiotropy
0	C : Epistasis
0	D : Polygenic inheritance

Which of the following trait can be related with given graph

O A: Tongue rolling

- O B: ABO Blood Group
- O C: Seed colour in pea plant
- O D: Eye colour in human

Multiple alleles are the alleles of a gene and are always:

O A: More than 1

O B: More than 2

O C: More than 3

O D: More than 4

Types of blood group A, B, O and AB are known as:

0	A : Phenotypes
0	B: Genomes
0	C : Genotypes

Multiple alleles

Submit Quiz

Which of the following blood group in humans is an example of co-dominance?

Example of autosomal recessive trait:

0	A:
	Haemophilia A

O B: Haemophilia B

O C: Blue blindness

O D: Hypophosphatemia

Which one is mismatched?

O A: Haemophilia C – autosomal

O B: Blue opsin - autosome 7

O C: tfm – X chromosome

O D:
Pattern baldness – X linked

Partially functional opsins are present in

0	A : Protanopia
0	B: Deutranopia
0	C : Red green colorblindness
0	D : Protanomalous

Most prevalent abnormality of blood clotting factor is of:

O A: Factor VII

O B: Factor VIII

O C: Factor IX

O D: Factor X

Chromosomal combination of a person with tfm syndrome is:

O A:

O B:

O C:

O D: XYY

Submit Quiz

_____ gene is male sex switch which triggers developmental process towards maleness:

O A:

Se

O B: SRY

O C:

O D:

Linked genes can be separated through:

O A: Segregation of alleles

O B: Independent assortment

Crossing over

O D: Mutation

Gene for formation of blue opsins is located on:

O A: Chromosomes # 19

O B: Chromosome # 9

C: Chromosome # 7

O D: Chromosome # 11

It represents normal colour vision:

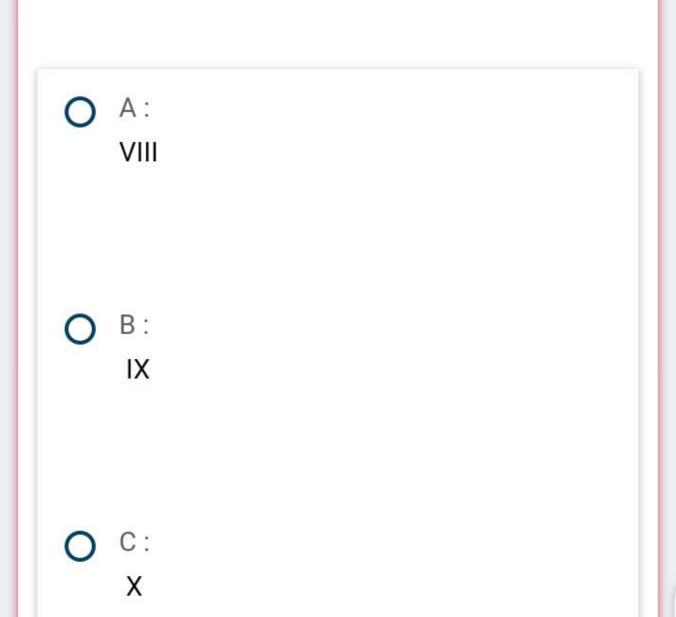
O A: Monochromacy

O B: Dichromacy

O C: Trichromacy

O D: Tetrachromacy

Genes for which of the following form a linkage group on chromosome 11?


O A: Leukemia, Albinism

O B: Hemophilia, Gout

O C: Gout, Sickle cell anemia

O D: Color blindness, Hemophilia

Hemophilia B is due to absence or abnormality of blood clotting factor:

O D:

A dichromate is unable to perceive:

0	A : One primary colour
0	B : Three primary colours
0	C : Two primary colours
	D:

Women with normal colour vision whose father was red-green colour blind married a red-green colour blind man. What is the probability of her first born child being red-green colourblind:

O A:

O B: 0.75

O C: 0.66

O D: 0.50 Two normal parents have an albino child. What is the probability that their next child will also be an albino?

O A:

O B: 50%

O C:

O D:

A boy receives his X-chromosome from:

0	A : His mother only
0	B : Both father and mother
0	C : His father only
0	D : Fither father or mother

A hereditary disease which is never passed on from father to son is:

O A: Y- linked disease

O B:
Autosomal disease

O C: X- linked disease

O D: None of these Haemophilia is caused by a sex-linked, recessive allele. Two parents have a haemophiliac son, a normal son and a haemophiliac daughter.

What are the most likely genotypes of the parents?

· · · · · · ·		if gonotypes of the purente
0	A : Mother	Father
	$x^H x^h$	x^hy
0	B : Mother	Father
	$x^H y^h$	$x^H y$
0	C : Mother X ^h X ^h	Father X ^H Y
0	D : Mother	Father

A normal woman whose father was red-blind marries a red-blind man. What proportion of their children can have normal colour vision?

O A: 25%

O B: 75%

O C:

O D: 100%

A person having recessive alleles for blue opsins on autosome 7 can perceive:

0	A:
	Blue color

O B:
Red and green colors

O C: All three primary colors

O D:
Red and blue colors

Which of the following is X-linked dominant trait in humans?

0	A : Hemophilia A
0	B : Vitamin D resistant rickets
0	C : Red-green colour blindness
0	D : Testicular feminization syndrome

Haemophilia can be the result of:

O A:
Reduction of blood clotting factors

O B:
Complete absence of blood clotting factors

O C:

Malfunctioning of blood clotting factors

O D: All A, B, C If a carrier woman for haemophila is married to a normal man, then all of the following combinations can exist except:

- O A: X^HX^H
- O B:
- O C:

O D:

If a female is colour blind having genetic combination X^CX^C , then the possible combination of her parents should be:

- $O A: X^{C}X^{C}, X^{C}Y$
- O B: X^CX^C, X^CY
- O C: X^CX^C, X^CY

O D: x^Cx^c, x^CY

This is not true about testicular feminization syndrome:

O A:
It is androgen insensitivity syndrome

O B: Individuals are females in appearance

O C: Having blind vagina but no uterus

O D:
Degenerated testes are present in scrotum

A person can differentiate between colours due to presence of normal:

0	A : Rod cells in retina
0	B: Cone cells in retina

O C:
Rod cells in cornea

O D: Cone cells in cornea

It passes directly from father to son:

0	A : X-linked trait
0	B : Y-linked trait
0	C : X-linked recessive trait
0	D : X-linked dominant trait

Gene for blood clotting factor XI is located on:

0	A : X chromosome
0	B: Y chromosome
0	C : Autosome
0	D : Both X & Y chromosomes

Physical association of two genes is known as:

0	A : Heterozygous
0	B : Recombination
•	C : Linkage
0	D : Dominance

If a carrier woman for haemophilia is married to a normal man, then all of the following combinations can exist in progeny except:

- O A:
- O B:
- O C:

O D:

Genes present on both X and Y chromosomes are known as:

	A : X-linked		
0	B : Y-linked		
0	C:		

O D:
Pseudoautosomal

Sex linked

Even a single recessive allele on X chromosome in male can be expressed because:

O A:

All genes on X chromosome can be expressed

O B:

Y chromosome has dominant allele for that trait

O C:

X chromosome alleles are dominant over Y chromosome

O D:

Y chromosome does not have counter part of allele of X chromosome