CHAPTER # 12

1.	The branch of science which deals with study of a) Rest c) Simple	b)	charges, is called electrostatics: Move None of these	A
2.	Like charges each other: a) Attract c) Contract		Repel None of these	В
3.	Unlike charges each other: a) Contract c) Attract		Directly Repel	C
4.	A substance through which an electric current can paa) Conductorc) Electric	b)	s called: Charge None of these	A
5.	The conductor is a substance which contains a) Close c) Electric	b)	cctrons: Open Free	D
6.	The substance through which an electric current can a) Insulator c) Plastic	b)	ass, is called: Conductor Rubber	A
7.	The insulator is a substance which does not contain _ a) Close c) Free	b)	electrons: Open Pass	C
8.	The force of attraction or repulsion between any magnitudes of the charges and proportional a) Inversely c) Equal	to tl b)		A
9.	According to Coulomb's law, if "q1" and "q2" are them, then: a) $F = \frac{Kr^2}{r}$			В
	a) $F = \frac{1}{q_1 q_2}$ c) $F = \frac{Kq_1 r^2}{q_2}$		$F = K \frac{q_1 q_2}{r^2}$ None of these	
10.	The value of "K" is constant and it depends upon thea) Mediumc) Direction	b)	between the charges: Force None of these	A
11.	The value of "K" =: a) $\frac{1}{4\pi \epsilon_0}$ c) $\frac{1}{8\pi \epsilon_0}$		$\frac{1}{6\pi \in_0}$ $\frac{1}{10\pi \in_0}$	А
12.	The value of " \in_0 " in Coulomb's law is: a) $4.16 \times 10^{-11} \text{ Nm}^2$ c) $6.14 \times 10^4 \text{ Nm}^2$		$8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$ None of these	В
13.	The force between two charges decreases by placinga) Insulatorc) Constant	an _ b)		A

PHYSICS

Electrostatics

CHAPTER # 12

14.	The SI unit of charge is:a) Jouleb) Coulomb	В
15.	 c) Work d) Kilometer The amount of charges which passes through a wire in one second when a steady c passing in a wire, is called: 	current of 1A is A
	a) One Coulombb) One Joulec) One Kilometerd) None of these	
16.	The area near an electric charge with in which it exerts force on another charged partie a) Electric Field b) Particle c) Source charge d) Coulomb	cle, is called: A
17.	The charge which is used to produce an electric field, is called:a) Electric fieldb) Field chargec) Electric intensityd) Test charge	В
18.	The field charge is also called:a) Source chargeb) Test chargec) Electric intensityd) None of these	А
20.	The strength of an electric field is known as intensity of the field:a) Electricb) Positivec) Coulombd) Amount	А
21.	Electric intensity is a quantity:a) Electricb) Scalarc) Vectord) None of these	C
22.	The general symbol to represent electric intensity is: a) \vec{R} b) \vec{F}	D
23.	c) \vec{C} d) \vec{E} If the field charge applies a force \vec{F} on the test charge q_o , then formula for elec	tric intensity is A
	a) $\vec{E} = \frac{\vec{F}}{q_0}$ b) $\vec{E} = \frac{q_0}{\vec{F}}$	
	c) $\vec{E} = \vec{F} q_0$ d) None of these	
24.	The SI unit of electric intensity is: a) N / Coulomb b) N ² / Coulomb c) J / Coulomb d) None of these	А
25.	The dimensions of electric intensity are: a) ML^2T^3 b) $ML^{-1}T^3$ c) $MLT^{-2}C^{-1}$ d) $MLT^{-3}C^2$	C
26.	The points where the resultant intensity is zero, are called:a) Extra pointsb) Neutral pointsc) Electric fieldd) Positive charge	В
27.	The electric lines of forces start from a positive charge and end on a:a) Negative chargeb) Each otherc) Perpendiculard) Conductor	А
28.	The electric lines of forces can never each other: a) Intersect b) Change c) Parallel d) None of these	А
29.	The lines of forces are to the surface of the conductor:a) Intersectb) Perpendicularc) Electricd) None of these	В

30.	The lines of forces do not exist inside the: a) Conductor c) Electric		Image None of these	А
31.	As we move away from the field the field charge, th a) Increase		nsity of the lines of force: Zero	C
	c) Decreases		Null	
32.	Electric flux is given as :			В
	a) $\Delta \phi_{\rm E} = \vec{\rm E} + \Delta \vec{\rm A}$	b)	$\Delta \phi_{\rm E} = \vec{\rm E} \ \Delta \vec{\rm A}$	
	c) $\Delta \phi_{\rm E} = \frac{\vec{\rm E}}{\Delta \vec{\rm A}}$	d)	None of these	
33.	Electric flux is a quantity:			А
	a) Scalar c) Zero		Vector None of these	
	→ ·			С
34.	When vector area ΔA makes an angle " θ " with the \vec{E}	e ele	ctric intensity:	C
	a) $\phi_{\rm E} = \frac{\vec{E}}{\Delta \vec{A}}$	b)	$\phi_{\rm E} = \vec{\rm E} + \Delta \vec{A}$	
	c) $\phi_{\rm E} = \vec{\rm E} \cdot \Delta \vec{A} \cos \theta$	d)	None of these	
35.	When an angle between \vec{E} and $\Delta \vec{A}$ is 0° , then flux p	assir	ng through an area will be :	В
	a) Minimum	b)	Maximum	
	c) Zero	,	Full	
36.	When an angle between \vec{E} and $\Delta \vec{A}$ is 90°, then flux a) Minimum		ing through an area will be: Maximum	А
	c) Zero		Null	
37.	When an angle between \vec{E} and $\Delta \vec{A}$ is greater than :	n 90°	, then flux passing through an area will be	А
	a) Negative		Positive	
	c) Null	d)	None of these	
38.	When an angle between \tilde{E} and $\Delta \tilde{A}$ is less than :	90°,	then flux passing through an area will be	С
	a) Negative		Null	
	c) Positive		None of these	
39.	The formula for the electric flux through the surfac	e of	a sphere due to a charge "+q" at its center is	А
	a) $\phi_e = \frac{q}{\epsilon_0}$	b)	$\phi_{e} = \frac{\epsilon_{0}}{q}$	
	c) $\phi_e = q + \epsilon_0$	d)	$\phi_e = q - \in_0$	
40.	According to law, "The total electric flux t	throu	gh a closed surface is equal to the product of	В
	$\frac{1}{\epsilon_0}$ and charge enclosed in the surface."			
	a) Newton'sc) Joule's	b) d)		
41.	The formula for Gauss's law is:	u)		А
-	a) $\phi_e = \frac{1}{\epsilon_0} \times Q$	h)	$\phi_e = \epsilon_0 \times Q$	
	c) $\phi_e = \phi_1 + \phi_2$	d)	None of these	

42.	The work done in moving a unit positive charge fro field is called: a) Electric field	b)	Potential difference	В
	c) Potential		Volt	
43.	The work done in moving a unit positive charge from intensity is called;	om ii	nfinity to that point against the electric field	A
	a) Absolute potential		Volt	
	c) Joule	d)	Coulomb	
44.	The unit of potential is:	• 、		С
	a) Joulec) Volt		Coulomb Newton	
45.	The formula for 1 volt =:	u)		А
43.	$\frac{1}{2} = \frac{1}{2}$		1Coulomb	A
	a) $\frac{1}{1 \text{Coulomb}}$	b)	1 Joule	
	1 Kilometer	•		
	c) <u>1Coulomb</u>	d)	None of these	
46.	The general relation for absolute potential or voltage	duo	to point charge "a" at a distance "r" from it	В
40.	is:	uue	to point charge q at a distance 1 from it,	D
	a) $V = \frac{1}{6\pi \epsilon_0} \cdot \frac{q}{r}$	b)	$V = \frac{1}{4\pi \epsilon_0} \cdot \frac{q}{r}$	
	a) $\sqrt{-\frac{1}{6\pi \epsilon_0}} \cdot \frac{1}{r}$	0)	$\mathbf{v} = \frac{1}{4\pi \in_0} \cdot \frac{1}{\mathbf{r}}$	
	c) $V = \frac{1}{8\pi \epsilon_0} \cdot \frac{q}{r}$	d)	None of these	
47.	The potential due to n-point charges is:			А
	a) $V = \frac{1}{4\pi \epsilon_0} \left[\sum_{i=1}^{i=n} \frac{q_i}{r_i} \right]$	b)	$V = \frac{1}{2\pi \epsilon_0} \left[\sum_{i=1}^{n=i} \frac{q_i}{r_i} \right]$	
	c) $V = \frac{1}{3\pi \epsilon_0} \left[\sum_{i=1}^{n=i} \frac{q_i}{r_i} \right]$	d)	None of these	
48.	The surface which have the same value of potential a	at all	points is called:	С
	a) Concentric surface	b)	Equi surface	
	c) Equipotential surface	d)	Charged surface	
49.	The value of one electron volt =:	• `	2 1 4 10-19	А
	a) $1 \text{ ev} = 1.6 \times 10^{-19} \text{J}$ c) $3 \text{ ev} = 6.1 \times 10^{-19} \text{J}$		2 ev = 1.6×10^{-19} J 1 ev = 2.1×10^{-19} J	
50		,		Л
50.	A capacitor is a device which is used to cha a) Negative	-	s. Equal	D
	c) Difference		Store	
51.	The ratio between charge and potential difference is	calle	ed of a capacitor:	В
	a) Difference	b)	Capacitance	
	c) Intensity	d)	None of these	
52.	The formula for capacitance is:			А
	a) $C = \frac{Q}{V}$	b)	$\mathbf{C} = \mathbf{Q}\mathbf{V}$	
			C	
	c) $C = \frac{V}{O}$	d)	$V = \frac{C}{Q}$	
52	×		~	р
53.	The SI unit of capacitance is called a: a) Joule	b)	Farad	В
	c) Newton		Capability	

CHAPTER # 12

54.	The capacitor whose capacitance can be changed, is of a) Constant c) Circular	called capacitor: b) Variable d) None of these	В
55.	The capacitor whose capacitance cannot be changed,a) Fixedc) Decrease	is called capacitor:b) Capacitanced) Capacitor	A
56.	When a charge falls from higher potential to lower potentiala) Fixedc) Loses	otential, it loses P.E. and K.E.: b) Gains d) Move	В
57.	Atom is a:a) Positively charged particlec) Charged particle	b) Negative charged particled) Neutral particle	D
59.	Concept of electric field theory was introduced by:a) Michael Faradayc) Dalton	b) Newtond) Kepler	A
60.	If electrons are added in an atom, it becomes:a) Positively charged particlec) Negatively charged particle	b) Neutral particled) None of these	C
61.	The force per unit charge is known as:a) Electric voltc) Electric intensity	b) Electric fluxd) Electric potential	C
62.	The law that governs the force between electric chana) Ampere's lawc) Faraday's law	ges is called: b) Coulomb's law d) Ohm's law	В
63.	Which one of the following is the unit of electric chaa) Coulombc) Volt	rge? b) Newton d) Coulomb/volt	А
64.	Which one of the following is the unit of electric fiel.a) Volt× Secondc) Volt× Ampere	d intensity? b) Volt× Joule d) Volt× Meter ⁻¹	D
65.	The force between two electrons separated by a dista a) r^2 c) r^{-1}	nce r varies as: b) r d) r^{-2}	D
66.	When the distance between two charged particles is ha) One-fourthc) Double	halved, the force between them becomes:b) One-halfd) Four times	D
67.	Two charges are placed at a certain distance apart. A between them will: a) Increase c) Remain unchanged	A brass sheet is placed between them. The forceb) Decreased) None of these	А
68.	Two charges are placed at a distance apart. If a gla them will:a) Be zeroc) Decrease	ass slab is placed between them, force betweenb) Increased) Remain the same	C
70.	There are two charges +1 micro – coulomb and 5 mi them will be: a) 1:5 c) 5:1	 b) 1:1 d) 1:25 	В

CHAPTER # 12

71.	F_g and F_e represent gravitational and electrostatic for	orce	respectively between electrons situated at a	D
/1.	distance of 10 cm. The ratio of F_g / F_e is of the order: a) 10^{42}	: b)	10	D
	c) 1	d)	10 ⁻⁴²	
72.	The ratio of the forces between two small spheres w dielectric constant k is respectively:	ith c	constant charges (a) in air (b) in a medium of	В
	a) $1:k$		k:1	
	c) $11:k^2$	d)	$k^2 : 1$	
73.	A charge q_1 exerts some force on a second charge q of q_1 exerted on q_2 :	-		D
	a) Decrease		Increase	
	c) Remains unchanged	u)	Increase if q_3 is of same sign as q_1 and decrease if q_3 is of opposite sign	
74.	A soap bubble is given negative charges, then its rad	lius:		В
	a) Decrease	b)	Increases	
	c) Remains unchanged	d)	Nothing can be predicted as information is insufficient	
76.	An electric field can deflect:			С
	a) X-rays		Neutrons	
	c) α -particles	d)	γ -rays	
77.	Electric intensity at a place due to a charged conduct	tor i	s a:	В
	a) Scalar quantity		Vector quantity	
	c) Semi vector and semi scalar quantity	d)	Dimensions quantity	
79.	The electric field inside a spherical shell of uniform			А
	a) Zeroc) Directly proportional to the distance from the cer		Constant less than zero	
	d) None of the above			
80.	Electric lines of force about a negative point charge a	are.		С
00.	a) Circular, anti-clock wise	b)	Circular, clock wise	C
	c) Radial, inward	d)	Radial, outward	
81.	If an electron has an initial velocity in a direction di the electron is:	iffer	ent from that of an electric field, the path of	D
	a) A straight line	- /	A circle	
	c) An ellipse	d)	A parabola	
82.	A hollow sphere of charge does not produce an elect		-	А
	a) Interior point		Outer point	
	c) Beyond 2 metros		Beyond 10 metros	
83.	The force experienced by a unit positive charge when			С
	a) Potential of electric field at that pointc) Intensity of electric field at that point		Moment of electric field at that point Capacity of electric filed at that point	
0.4				р
84.	The intensity at a point due to a charge is inversely p a) Amount of charge		Size of charge	В
	c) Distance of the point		Square of the distance from the charge	
88.	Electric potential is a:		-	А
00.	a) Scalar quantity	b)	A vector quantity	11
	c) Dimensions		Nothing can be said	
89.	An equipotential surface is that surface:			А
	a) On which each and every point has the same potential			
	 b) Which has negative potential c) Which has positive potential 	<i>(</i> ۲	Which has zero potential	
	c) Which has positive potential	u)	Which has zero potential	

	<u>Electrostat</u>	tics		
90.	If a unit charge is taken from one point to another ova) Work is done on the chargec) Work on the charge is constant	b)	n equipotential surface, then: Work is done by the charge No work is done	А
91.	An electric dipole is kept in non-uniform electric fiela) A force and a Torquec) A Torque but not a force	b)	experiences: A force but not a Torque Neither a force nor a Torque	А
92.	 Which one of the following statements regarding a wrong: a) Capacitance of a parallel plate condenser varies i b) Capacitance of a parallel plate condenser varies i c) Capacitance of a parallel plate condenser varies o d) Capacitance of a parallel plate condenser varies o 	linea inve with	rly with common area of plate rsely with separation of the plates the material between the plates	D
93.	The capacitance of parallel plate condenser varies with a) Area of the platesc) Distance between the plates	b)	Medium between the plates Metal of the plates	Α
94.	In a charged capacitor, the energy is stored in:a) The field between the platesc) The negative charges	b) d)	The positive charges All of these	A
96.	Farad is a unit of:a) Self-inductancec) Mutual inductance		Capacitance Conductance of an electrolyte	В
100.	The capacitance of a parallel plate condenser is C plates is halved will be: a) 4C c) C/2	b)	capacity when the separation between the 2C C/4	В
101.	Two condensers of capacitance C_1 and C_2 respect capacitance of the system is: a) $C_1 + C_2$ c) $C_1 - C_2$	b)	y are connected in parallel. The equivalent $C1\ C2\ /\ (C_1+C_2) \\ (1/C_1)+(1/C_2)$	Α
102.	 The empty space between the plates of a capacitor is capacitance of capacitor: a) Increases by a factor K c) Increases by a factor K² 	b)	led by a liquid of dielectric constant K. The Decreases by a factor K Decreases by a factor K ²	Α
103.	In order to increase the capacity of a parallel plat plates a sheet of: a) Mica c) Copper	b)	ndenser one should introduce between the Tin None of these	Α
105.	 A capacitor is charged by using a battery, which slipped between the plates, which results in: a) Reduction of charge on the plates and increase of b) Increase in the potential difference across the plate the charge on the plates c) Decrease in the potential difference across plates the charge on plates d) None of the above 	f pot ates,	ential difference across the plates reduction in stored energy, but no change in	С
106.	Electron volt is the unit of:a) Potential differencec) Electric current		Electrical energy Capacitance	В