Electrostatics

1. The branch of science which deals with study of \qquad charges, is called electrostatics:
a) Rest
c) Simple
b) Move
d) None of these
2. Like charges \qquad each other:

a) Attract

c) Contract
b) Repel
d) None of these
3. Unlike charges \qquad each other:
a) Contract
b) Directly
c) Attract
d) Repel
4. A substance through which an electric current can pass, is called \qquad :
a) Conductor
b) Charge
c) Electric
d) None of these
5. The conductor is a substance which contains \qquad electrons:
a) Close
b) Open
c) Electric
d) Free
6. The substance through which an electric current cannot pass, is called \qquad \therefore
a) Insulator
b) Conductor
c) Plastic
d) Rubber
7. The insulator is a substance which does not contain \qquad electrons:
b) Open
a) Close
d) Pass
8. The force of attraction or repulsion between any two charges is directly proportional to the magnitudes of the charges and \qquad proportional to the square of the distance between them:
a) Inversely
b) Directly
c) Equal
d) Conductor
9. According to Coulomb's law, if " q 1 " and " q 2 " are any two charges and " r " is distance between them, then \qquad _:
a) $\mathrm{F}=\frac{\mathrm{Kr}^{2}}{\mathrm{q}_{1} \mathrm{q}_{2}}$
b) $\mathrm{F}=\mathrm{K} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}$
c) $\mathrm{F}=\frac{\mathrm{Kq}_{1} \mathrm{r}^{2}}{\mathrm{q}_{2}}$
d) None of these
10. The value of " K " is constant and it depends upon the \qquad between the charges:
a) Medium
b) Force
c) Direction
d) None of these
11. The value of " K " = \qquad :
a) $\frac{1}{4 \pi \epsilon_{0}}$
b) $\frac{1}{6 \pi \epsilon_{0}}$
c) $\frac{1}{8 \pi \epsilon_{0}}$
d) $\frac{1}{10 \pi \epsilon_{0}}$
12. The value of " ϵ_{0} " in Coulomb's law is \qquad :
a) $4.16 \times 10^{-11} \mathrm{Nm}^{2}$
b) $8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$
c) $6.14 \times 10^{-4} \mathrm{Nm}^{2}$
d) None of these
13. The force between two charges decreases by placing an \qquad between two charges:
a) Insulator
b) Iron rod
c) Constant
d) None of these

Electrostatics

14. The SI unit of charge is \qquad :
a) Joule
b) Coulomb
c) Work
d) Kilometer
15. The amount of charges which passes through a wire in one second when a steady current of 1 A is passing in a wire, is called \qquad -:
a) One Coulomb
b) One Joule
c) One Kilometer
d) None of these
16. The area near an electric charge with in which it exerts force on another charged particle, is called:
a) Electric Field
b) Particle
c) Source charge
d) Coulomb
17. The charge which is used to produce an electric field, is called \qquad _:
a) Electric field
b) Field charge
c) Electric intensity
d) Test charge
18. The field charge is also called \qquad :
a) Source charge
b) Test charge
c) Electric intensity
d) None of these
19. The strength of an electric field is known as \qquad intensity of the field:
a) Electric
b) Positive
c) Coulomb
d) Amount
20. Electric intensity is a \qquad quantity:
a) Electric
b) Scalar
c) Vector
d) None of these
21. The general symbol to represent electric intensity is \qquad :
a) \vec{R}
b) \vec{F}
c) $\overrightarrow{\mathrm{C}}$
d) \vec{E}
22. If the field charge applies a force \vec{F} on the test charge q_{o}, then formula for electric intensity is
\qquad
a) $\overrightarrow{\mathrm{E}}=\frac{\overrightarrow{\mathrm{F}}}{\mathrm{q}_{0}}$
b) $\overrightarrow{\mathrm{E}}=\frac{\mathrm{q}_{0}}{\overrightarrow{\mathrm{~F}}}$
c) $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{F}} \mathrm{q}_{0}$
d) None of these
23. The SI unit of electric intensity is \qquad \therefore
a) $\mathrm{N} /$ Coulomb
b) $\mathrm{N}^{2} /$ Coulomb
c) J/Coulomb
d) None of these
24. The dimensions of electric intensity are \qquad :
a) $\mathrm{ML}^{2} \mathrm{~T}^{3}$
b) $\mathrm{ML}^{-1} \mathrm{~T}^{3}$
c) $\mathrm{MLT}^{-2} \mathrm{C}^{-1}$
d) $\mathrm{MLT}^{-3} \mathrm{C}^{2}$
25. The points where the resultant intensity is zero, are called \qquad :
a) Extra points
b) Neutral points
c) Electric field
d) Positive charge
26. The electric lines of forces start from a positive charge and end on a \qquad _:
a) Negative charge
b) Each other
c) Perpendicular
d) Conductor
27. The electric lines of forces can never \qquad each other:
a) Intersect
b) Change
c) Parallel
d) None of these
28. The lines of forces are \qquad to the surface of the conductor:
a) Intersect
b) Perpendicular
c) Electric
d) None of these

Electrostatics

30. The lines of forces do not exist inside the \qquad :
b) Image
a) Conductor
d) None of these
31. As we move away from the field the field charge, the density of the lines of force \qquad \therefore
a) Increase
b) Zero
c) Decreases
d) Null
32. Electric flux is given as :
a) $\Delta \phi_{\mathrm{E}}=\overrightarrow{\mathrm{E}}+\Delta \overrightarrow{\mathrm{A}}$
b) $\Delta \phi_{\mathrm{E}}=\overrightarrow{\mathrm{E}} \Delta \overrightarrow{\mathrm{A}}$
c) $\Delta \phi_{E}=\frac{\overrightarrow{\mathrm{E}}}{\Delta \overrightarrow{\mathrm{A}}}$
d) None of these
33. Electric flux is a \qquad quantity:
a) Scalar
b) Vector
c) Zero
d) None of these
34. When vector area $\Delta \vec{A}$ makes an angle " θ " with the electric intensity \qquad :
a) $\phi_{\mathrm{E}}=\frac{\vec{E}}{\Delta \vec{A}}$
b) $\phi_{\mathrm{E}}=\overrightarrow{\mathrm{E}}+\Delta \vec{A}$
c) $\phi_{\mathrm{E}}=\overrightarrow{\mathrm{E}} \cdot \Delta \vec{A} \cos \theta$
d) None of these
35. When an angle between $\overrightarrow{\mathrm{E}}$ and $\Delta \overrightarrow{\mathrm{A}}$ is 0°, then flux passing through an area will be \qquad :
a) Minimum
b) Maximum
c) Zero
d) Full
36. When an angle between $\overrightarrow{\mathrm{E}}$ and $\Delta \overrightarrow{\mathrm{A}}$ is 90°, then flux passing through an area will be \qquad :
a) Minimum
b) Maximum
c) Zero
d) Null
37. When an angle between $\overrightarrow{\mathrm{E}}$ and $\Delta \overrightarrow{\mathrm{A}}$ is greater than 90°, then flux passing through an area will be
\qquad
a) Negative
b) Positive
c) Null
d) None of these
38. When an angle between $\overrightarrow{\mathrm{E}}$ and $\Delta \overrightarrow{\mathrm{A}}$ is less than 90°, then flux passing through an area will be
a) Negative
b) Null
c) Positive
d) None of these
39. The formula for the electric flux through the surface of a sphere due to a charge " +q " at its center is
\qquad :
a) $\phi_{e}=\frac{q}{\epsilon_{0}}$
b) $\phi_{\mathrm{e}}=\frac{\epsilon_{0}}{\mathrm{q}}$
c) $\phi_{e}=q+\epsilon_{0}$
d) $\phi_{e}=q-\epsilon_{0}$
40. According to \qquad law, "The total electric flux through a closed surface is equal to the product of $\frac{1}{\epsilon_{0}}$ and charge enclosed in the surface."
a) Newton's
b) Gauss's
c) Joule's
d) None of these
41. The formula for Gauss's law is \qquad :
a) $\phi_{e}=\frac{1}{\epsilon_{0}} \times \mathrm{Q}$
b) $\phi_{\mathrm{e}}=\epsilon_{0} \times \mathrm{Q}$
c) $\phi_{e}=\phi_{1}+\phi_{2}$
d) None of these

Electrostatics

42. The work done in moving a unit positive charge from one point to an other point against an electric field is called \qquad :
a) Electric field
b) Potential difference
c) Potential
d) Volt
43. The work done in moving a unit positive charge from infinity to that point against the electric field intensity is called \qquad ;
a) Absolute potential
b) Volt
c) Joule
d) Coulomb
44. The unit of potential is \qquad :
b) Coulomb
a) Joule
d) Newton
45. The formula for 1 volt $=$ \qquad :
a) $\frac{1 \text { Joule }}{1 \text { Coulomb }}$
b) $\frac{1 \text { Coulomb }}{1 \text { Joule }}$
c) $\frac{1 \text { Kilometer }}{1 \text { Coulomb }}$
d) None of these
46. The general relation for absolute potential or voltage due to point charge " q " at a distance " r " from it, is \qquad _:
a) $V=\frac{1}{6 \pi \epsilon_{0}} \cdot \frac{q}{r}$
b) $V=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q}{r}$
c) $V=\frac{1}{8 \pi \epsilon_{0}} \cdot \frac{q}{r}$
d) None of these
47. The potential due to n-point charges is \qquad :
a) $\mathrm{V}=\frac{1}{4 \pi \epsilon_{0}}\left[\sum_{\mathrm{i}=1}^{\mathrm{i}=\mathrm{n}} \frac{\mathrm{q}_{\mathrm{i}}}{\mathrm{r}_{\mathrm{i}}}\right]$
b) $V=\frac{1}{2 \pi \epsilon_{0}}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}=\mathrm{i}} \frac{\mathrm{q}_{\mathrm{i}}}{\mathrm{r}_{\mathrm{i}}}\right]$
c) $V=\frac{1}{3 \pi \epsilon_{0}}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}=\mathrm{i}} \frac{\mathrm{q}_{\mathrm{i}}}{\mathrm{r}_{\mathrm{i}}}\right]$
d) None of these
48. The surface which have the same value of potential at all points is called \qquad :
a) Concentric surface
b) Equi surface
c) Equipotential surface
d) Charged surface
49. The value of one electron volt $=$ \qquad :
a) $1 \mathrm{ev}=1.6 \times 10^{-19} \mathrm{~J}$
b) $2 \mathrm{ev}=1.6 \times 10^{-19} \mathrm{~J}$
c) $3 \mathrm{ev}=6.1 \times 10^{-19} \mathrm{~J}$
d) $1 \mathrm{ev}=2.1 \times 10^{-19} \mathrm{~J}$
50. A capacitor is a device which is used to \qquad charges:
a) Negative
b) Equal
c) Difference
d) Store
51. The ratio between charge and potential difference is called \qquad of a capacitor:
a) Difference
b) Capacitance
c) Intensity
d) None of these
52. The formula for capacitance is \qquad :
a) $C=\frac{Q}{V}$
b) $\quad \mathrm{C}=\mathrm{QV}$
c) $\mathrm{C}=\frac{\mathrm{V}}{\mathrm{Q}}$
d) $V=\frac{C}{Q}$
53. The SI unit of capacitance is called a \qquad :
a) Joule
b) Farad
c) Newton
d) Capability

Electrostatics

54. The capacitor whose capacitance can be changed, is called \qquad capacitor:
a) Constant
b) Variable
c) Circular
d) None of these
55. The capacitor whose capacitance cannot be changed, is called \qquad capacitor:
a) Fixed
b) Capacitance
c) Decrease
d) Capacitor
56. When a charge falls from higher potential to lower potential, it loses P.E. and \qquad K.E.:
a) Fixed
b) Gains
c) Loses
d) Move
57. Atom is a:
a) Positively charged particle
b) Negative charged particle
c) Charged particle
d) Neutral particle
58. Concept of electric field theory was introduced by:
a) Michael Faraday
b) Newton
c) Dalton
d) Kepler
59. If electrons are added in an atom, it becomes:
a) Positively charged particle
b) Neutral particle
c) Negatively charged particle
d) None of these
60. The force per unit charge is known as:
a) Electric volt
b) Electric flux
c) Electric intensity
d) Electric potential
61. The law that governs the force between electric changes is called:
a) Ampere's law
b) Coulomb's law
c) Faraday's law
d) Ohm's law
62. Which one of the following is the unit of electric charge?
a) Coulomb
b) Newton
c) Volt
d) Coulomb/volt
63. Which one of the following is the unit of electric field intensity?
a) Volt \times Second
b) Volt \times Joule
c) Volt \times Ampere
d) Volt \times Meter $^{-1}$
64. The force between two electrons separated by a distance r varies as:
a) r^{2}
b) r
c) r^{-1}
d) r^{-2}
65. When the distance between two charged particles is halved, the force between them becomes:

D
a) One-fourth
b) One-half
c) Double
d) Four times
67. Two charges are placed at a certain distance apart. A brass sheet is placed between them. The force between them will:
a) Increase
b) Decrease
c) Remain unchanged
d) None of these
68. Two charges are placed at a distance apart. If a glass slab is placed between them, force between them will:
a) Be zero
b) Increase
c) Decrease
d) Remain the same
70. There are two charges +1 micro - coulomb and 5 micro - coulomb. The ratio of the forces acting on them will be:
a) $1: 5$
b) $1: 1$
c) $5: 1$
d) $1: 25$

Electrostatics

71. $\quad \mathrm{F}_{\mathrm{g}}$ and F_{e} represent gravitational and electrostatic force respectively between electrons situated at a distance of 10 cm . The ratio of $\mathrm{F}_{\mathrm{g}} / \mathrm{F}_{\mathrm{e}}$ is of the order:
a) 10^{42}
b) 10
c) 1
d) 10^{-42}
72. The ratio of the forces between two small spheres with constant charges (a) in air (b) in a medium of dielectric constant k is respectively:
a) $1: \mathrm{k}$
b) $\mathrm{k}: 1$
c) $11: \mathrm{k}^{2}$
d) $\mathrm{k}^{2}: 1$
73. A charge q_{1} exerts some force on a second charge q_{2}. If third charge q_{3} is brought near q_{1}, the force of q_{1} exerted on q_{2} :
a) Decrease
b) Increase
c) Remains unchanged
d) Increase if q_{3} is of same sign as q_{1} and decrease if q_{3} is of opposite sign
74. A soap bubble is given negative charges, then its radius:
a) Decrease
b) Increases
c) Remains unchanged
d) Nothing can be predicted as information is insufficient
75. An electric field can deflect:
a) X-rays
b) Neutrons
c) α-particles
d) γ-rays
76. Electric intensity at a place due to a charged conductor is a:
a) Scalar quantity
b) Vector quantity
c) Semi vector and semi scalar quantity
d) Dimensions quantity
77. The electric field inside a spherical shell of uniform surface charge density is:
a) Zero
b) Constant less than zero
c) Directly proportional to the distance from the center
d) None of the above
78. Electric lines of force about a negative point charge are:
a) Circular, anti-clock wise
b) Circular, clock wise
c) Radial, inward
d) Radial, outward
79. If an electron has an initial velocity in a direction different from that of an electric field, the path of the electron is:
a) A straight line
b) A circle
c) An ellipse
d) A parabola
80. A hollow sphere of charge does not produce an electric field at any:
a) Interior point
b) Outer point
c) Beyond 2 metros
d) Beyond 10 metros
81. The force experienced by a unit positive charge when placed in an electric field is called:
a) Potential of electric field at that point
b) Moment of electric field at that point
c) Intensity of electric field at that point
d) Capacity of electric filed at that point
82. The intensity at a point due to a charge is inversely proportional to the:
a) Amount of charge
b) Size of charge
c) Distance of the point
d) Square of the distance from the charge
83. Electric potential is a:
b) A vector quantity
a) Scalar quantity
c) Dimensions
d) Nothing can be said
84. An equipotential surface is that surface:
a) On which each and every point has the same potential
b) Which has negative potential
c) Which has positive potential
d) Which has zero potential

Electrostatics

90. If a unit charge is taken from one point to another over an equipotential surface, then:
a) Work is done on the charge
b) Work is done by the charge
c) Work on the charge is constant
d) No work is done
91. An electric dipole is kept in non-uniform electric field. It experiences:
a) A force and a Torque
b) A force but not a Torque
c) A Torque but not a force
d) Neither a force nor a Torque
92. Which one of the following statements regarding the capacitance of a parallel plate condenser is wrong:
a) Capacitance of a parallel plate condenser varies linearly with common area of plate
b) Capacitance of a parallel plate condenser varies inversely with separation of the plates
c) Capacitance of a parallel plate condenser varies with the material between the plates
d) Capacitance of a parallel plate condenser varies with the metal of the plates
93. The capacitance of parallel plate condenser varies with:
a) Area of the plates
b) Medium between the plates
c) Distance between the plates
d) Metal of the plates
94. In a charged capacitor, the energy is stored in:
a) The field between the plates
b) The positive charges
c) The negative charges
d) All of these
95. Farad is a unit of:
a) Self-inductance
b) Capacitance
c) Mutual inductance
d) Conductance of an electrolyte
96. The capacitance of a parallel plate condenser is C. Its capacity when the separation between the plates is halved will be:
a) 4 C
b) 2 C
c) $\mathrm{C} / 2$
d) $\mathrm{C} / 4$
97. Two condensers of capacitance C_{1} and C_{2} respectively are connected in parallel. The equivalent capacitance of the system is:
a) $\mathrm{C}_{1}+\mathrm{C}_{2}$
b) $\mathrm{C} 1 \mathrm{C} 2 /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$
c) $\mathrm{C}_{1}-\mathrm{C}_{2}$
d) $\left(1 / \mathrm{C}_{1}\right)+\left(1 / \mathrm{C}_{2}\right)$
98. The empty space between the plates of a capacitor is filled by a liquid of dielectric constant K. The capacitance of capacitor:
a) Increases by a factor K
b) Decreases by a factor K
c) Increases by a factor K^{2}
d) Decreases by a factor K^{2}
99. In order to increase the capacity of a parallel plate condenser one should introduce between the plates a sheet of:
a) Mica
b) Tin
c) Copper
d) None of these
100. A capacitor is charged by using a battery, which is then disconnected. A dielectric slab is then slipped between the plates, which results in:
a) Reduction of charge on the plates and increase of potential difference across the plates
b) Increase in the potential difference across the plates, reduction in stored energy, but no change in the charge on the plates
c) Decrease in the potential difference across plates, reduction in stored energy, but no change in the charge on plates
d) None of the above
101. Electron volt is the unit of:
a) Potential difference
b) Electrical energy
c) Electric current
d) Capacitance
