1. The conventional current through a conductor always flows from its

- (a) lower potential end to higher potential end
- (b) higher potential end to lower potential end
- (c) left end to right end
- (d) none of these

2. An electric current in a solid metal conductor is a movement of

(a) protons

- (b) electrons
- (c) metal atoms
- (d) metal ions
- 3. The electrical conduction takes place by the movement of both positive and negative ions in
 - (a) metals(b) liquids(c) gases(d) both liquids and gases
- 4. According to Joule's law, the heat produced in a current carrying conductor is
 - (a) directly proportional to current
 - (b) directly proportional to the square of current
 - (c) inversely proportional to the resistance
 - (d) none of these
- 5. The heat produced in time *t* by a current *I* flowing through a resistance *R* is

(a) I R t (b) $I^2 R/t$ (c) $I^2 R t$ (d) I R/r

- 6. When a conductor is connected to a battery, the free electrons in the conductor experience a force
 - (a) in the direction of the electric field
 - (b) opposite to the electric field
 - (c) perpendicular to the electric field
 - (d) in arbitrary direction

7. The conductivity of a metal decreases with increase in temperature because

- (a) root mean square velocity of electrons increases
- (b) the number of free electrons decreases
- (c) the number of the electrons increases
- (d) the mean time between collisions of electrons with atoms decreases

8. **Choose the correct relation:**

- (a) coulomb = ampere / second
- (b) watt = coulomb / ampere
- (c) volt = ampere / ohm
- ampere = coulomb / second (d)

9. If the current through a resistance is halved, then

- (a) the power is halved
- the heat dissipated is halved (b)
- (c) the potential difference is halved
- none of these (d)

Electrolysis is the _____ effect of current 10.

(a) heating

- (a) heating(c) chemical
- (b) magnetic (d) electric

11. Charges in motion produce

- (a) electric field
- (b) magnetic field
- both electric as well as magnetic field (c)
- neither electric nor magnetic field. (d)

When the temperature of a conductor increases, its 12. resistance

- (a) decreases
- (b) increases
- first increases and then decreases (c)
- (d) remains constant

13. The resistance of a conductor increases by

- (a) decreasing the length
- decreasing the thickness (b)
- increasing both length and thickness (c)
- increasing length and decreasing thickness (d)

14. Six equal masses of some metal wire were made into six different lengths of wire of uniform cross-sectional area. The resistance *R* and length *l* of each wire was measured, which graph best illustrates the results?

- 15. A wire of uniform area of cross-section 'A' and length LWhen cut into three pieces, the has a resistance R. resistivity of each part
 - decreases by 1/3(a)
 - (b) increases by 3
 - remains the same (c)
 - (d) none of these
- The SI unit of resistivity is 16. (a) Ω - m² (b) $\Omega - m^{-1}$
 - (d) Ω cm (c) Ω - m
- Which of the graphs given below best shows the variation 17. of current with time in a tungsten filament lamp, from the moment the current flows?

Resistivity is the reciprocal of 18. (a) resistance (b) conductance

(c) conductivity

(d) permittivity

- Which of the followings is the best material for making 19. wires?
 - (a) magnin

(b) constantan

(c) copper

(d) aluminum

- 20. A cylindrical copper rod is re-formed to twice its original length. Which one of the followings statements describes the way in which resistance is changed?
 - (a) The resistance remains constant.
 - (b) The resistance increases by a factor of 2.
 - (c) The resistance increases by a factor of 4.
 - (d) The resistance increases by a factor of 8.

21. The electrical resistance of a metal wire decreases when it is 1. shortened 2. cooled 3. made thinner

- (a) 1 and 2 (b) 2 and 3
- (c) 1 only (d) 3 only
- 22. If equal current flows through each of the resistors X, Y and Z, which one of the following statements is not correct?
 - (a) The resistors have equal resistance
 - (b) The potential drop across each resistance is the same
 - (c) Each resistor will dissipate same power
 - (d) Removing X reduces the Resistance of the circuit

23. For the circuit shown, which of the following statements is true?

- (a) Same current flows through each resistance
- (b) Potential difference across each resistor is different
- (c) Different current is passing through each resistor
- (d) Current passes through the smallest resistance only

24. An apparatus used to compare the emf of two cells is a

- (a) Wheatstone bridge
- (c) potential divider

(b) potentiometer(d) voltmeter

- 25. An instrument, which can measure potential without drawing any current, is
 - (a) galvanometer
- (b) ohm meter

(c) Wheatstone bridge (d) potentiometer

26. Which of the following changes to a wire will double its resistance?

	<u>Area</u>	<u>Length</u>
(a)	double	double
(b)	double	halve
(c)	halve	no change
(d)	halve	halved

27. Why is tungsten used for filament of an electric bulb in preference to copper?

- (a) Tungsten is better conductor
- (b) Tungsten has a higher melting point
- (c) Tungsten is more easily bent to required shape
- (d) Tungsten is cheaper and easily available

28. SI unit of temperature coefficient of resitivity is

(a) Ω–m	(b) Ω m ⁻¹
(c) Ω K ⁻¹	(d) K ⁻¹

29. The temperature coefficient of resistivity of a conductor is determined from the formula

(a) $\alpha = \frac{R_t}{R_o t}$	(b) $\alpha = \frac{R_t - R_o}{R_o t}$
(c) $\alpha = \frac{R_t - R_o}{t}$	(d) $\alpha = \frac{R_t}{(R_t - R_o)t}$

30. Substances like germanium and silicon have

- (a) negative temperature coefficient
- (b) positive temperature coefficient
- (c) zero temperature coefficient
- (d) infinite resistance

31. Siemen is the unit of

(a) resistance	(b) conductance
(c) resistivity	(d) conductivity

32. The unit of conductivity is

(a) Siemen m^{-1} (b) (c) show m^{-1} (d)

(b) 1 mho m⁻¹

(d) Both siemen m⁻¹ and mho m⁻¹

33. A 15.75 k Ω resistance has a tolerance band of gold colour. The actual resistance of the resistor is

(a) 14.75 kΩ (b) 14.25 kΩ

(c) $13.5 \text{ k}\Omega$ (d) between $14.75 \text{ k}\Omega \& 16.55 \text{ k}\Omega$

34. Which of the following statements applies to a thermistor?

- (a) Its resistance increases when more light falls on it.
- (b) Its resistance decreases as more light falls on it.
- (c) Its resistance decreases when its temperature increases.
- (d) Its resistance increases when its temperature decreases.

35. Electrical energy is measured in units of

- (a) watt (b) horse power
- (c) kilowatt (d) kilowatt hour

36. The relation between joule and kilowatt hour is

(a) 1 kWh = 3.6 x 10 ⁵ J	(b) 1 kWh = 3.6 x 10 ⁶ J
(c) 1 J = 3.6 x 10 ⁵ kWh	(d) 1 J = 3.6 x 10 ⁶ kWh

37. What is the cost of operating a 100 W bulb for 10 hours at Rs. 3.0 per kWh?

(a) Rs. 0.30	(b) Rs. 3.00
(c) Rs. 30.0	(d) None of these.

38. The largest number of 100 W bulbs which can be safely run from a 240 V supply with 5 A fuse is

(a) 4	(b) 5
(c) 12	(d) 3

39. The terminal potential difference of a short circuited battery of em*f E* is equal to

(a) <i>E</i>	(b) 2 <i>E</i>
(c) <i>E</i> /2	(d) 0

- 40. In a balanced Wheatstone bridge containing resistance R_{1} , R_{2} , R_{3} and R_{4} the current through the galvanometer is zero. The galvanometer current will still be zero when
 - (a) R_1 and R_2 are interchanged
 - (b) R_3 and R_4 are interchanged
 - (c) R_1 and R_3 are interchanged
 - (d) battery and galvanometer are interchanged

Key to Test Chapter 13

1	b	21	а
2	b	22	d
3	d	23	С
4	b	24	b
5	С	25	d
6	С	26	С
7	d	27	b
8	d	28	d
9	С	29	b
10	С	30	а
11	С	31	b
12	b	32	d
13	d	33	d
14	С	34	С
15	С	35	d
16	С	36	b
17	d	37	b
18	С	38	С
19	C	39	d
20	С	40	d