1.	The fi (a) gra (c) ma	eld around a moving avitational field agnetic field	<pre>charge is called (b) electric field (d) both electric and magnetic field</pre>
2.	A curr must (a) pa (c) at	r ent carrying wire is it be oriented so tha rallel angle of 30°	placed in a magnetic field. How t the force on it is zero? (b) perpendicular (d) at an angle of 60°
3.	 A straight current wire produces a (a) circular electric field (b) a circular magnetic field (c) magnetic field of the shape of a bar magnet (d) none of these 		
4.	Of the may f (a) F a (c) L a	e three vector in F = form any angle betwee and L and B	<i>I</i> (L x B), which pair of vectors en them? (b) F and B (d) none of these
5.	On c exper direct	changing the direct ienced by a current ion through °	tion of L and B, the force carrying conductor changes its

(a) 90°	(b) 180°
(c) 0°	(d) any possible angle

- 6. The diagram shows a current carrying wire passing through the centre of a sheet of paper. How do the strengths of the magnetic field at points X, Y and Z compare?
 - (a) equal at X, Y and Z
 - (b) equal at X and Z but stronger at Y
 - (c) equal at X and Z but weaker at Y
 - (d) stronger at X and Y than Z

7. SI unit of magnetic induction is

(a) Weber	(b) tesla
(c) gauss	(d) henry

8. 1 tesla equals

(a) 1 NA ⁻¹ m ⁻¹	(b) 1 NA ⁻¹ m
(c) 1 NAm ⁻¹	(d) 1 NAm

9. X, Y and Z represent three wires perpendicular to the paper. Currents in X and Y are into the paper while that in Z is out of the paper. The resultant force on Y due to the current in X and Z is

- (a) zero
- (b) in the direction from Y to Z
- X Y Z ⊗ ⊗ ⊙
- (c) in the direction from Y to X
- (d) in the direction dependent on the current strength

10. The SI unit of magnetic flux is

- (a) weber
- (c) weber m^{-1}

11. 1 weber equals

(a) 1 Nm⁻¹ A (c) 1 NA⁻¹m⁻¹ (b) 1 NmA⁻¹(d) none of these

(b) weber m^{-2}

(d) tesla

12. The relation $\frac{\Delta B}{\Delta A}$ represents(a) magnetic field(b) magnetic flux density(c) magnetic flux(d) magnetic induction

13. Which one of the followings is not a unit of magnetic induction?

(a) tesla(b) gauss(c) weber(d) weber / ampere metre

14. A charged particle moving in a magnetic field experiences a force in the direction

- (a) of the field
- (b) opposite to the field
- (c) of its motion
- (d) perpendicular to both field and motion

- On changing the direction of v and B the force 15. experienced by a charge changes its direction through (a) 90° (b) 180°
 - (c) 0°

- (d) any possible angle
- When a stream of α particles passes through the 16. magnetic field as shown, it is
 - (a) un-deflected
 - (b) deflected towards the south pole
 - (c) deflected towards the north pole
 - (d) deflected into the plane of the paper

- 17. A perpendicular magnetic field acts on a moving charged particle so as to change its
 - (a) speed only
 - (b) energy only (c) direction of motion only (d) velocity.
- 18. The force experienced by a charged particle while passing through an electric and a magnetic field is called

(a) electric force	(b) m
(c) electromagnetic force	(d) L

- nagnetic force (d) Lorentz force
- **19.** A charged particle has been projected in a magnetic field. The work done by the deflecting magnetic field on the charged particle is

(a) positive	(b) negative
(c) zero	(d) meaning less

20. A metallic conductor of area A has n free electrons per unit volume each carrying a charge and moving with a drift velocity v. The current flowing through the conductor is

(a) <i>nAev</i>	(b) <i>nAv/e</i>
(c) <i>nAe/v</i>	(d) <i>nev/A</i>

21. A singly charged ion is moving in a uniform magnetic field of flux density B in a circle of radius r with speed v. The flux density, which would maintain a doubly charged ion of the same mass in the same circle at the same speed, would be

(a) *B*/4 (b) *B*/2

(c) <i>B</i>	(d) 2 <i>B</i>
	(u) 20

22. A particle of charge q and mass m entering a perpendicular magnetic field follows a circular path of radius r equal to

(a) $\frac{mv}{qB}$	(b) $\frac{Bv}{qm}$
(c) $\frac{mB}{qv}$	(d) <u>qB</u> <u>mv</u>

- 23. A beam of electrons travelling in a horizontal direction is deflected downwards by an electric field. The beam could be returned to its original direction by applying
 - (a) another electric field at right angle to the directions of both the path of electrons and the original electric field
 - (b) a magnetic field directed vertically upward
 - (c) a magnetic field in the same direction as the electric field
 - (d) a magnetic field at right angles to the directions of both electric field and the path of electrons.

24. In a cathode ray tube the electrons are produced

- (a) by applying an electric field to the x-plates
- (b) by heating a metal filament
- (c) by ionization of the air
- (d) from a fluorescent material
- 25. A loop of wire is placed in a uniform magnetic field with its plane perpendicular to the magnetic field. When a current is passed through the loop, it
 - (a) experience a torque
 - (b) remains stationary
 - (c) experiences a force perpendicular to the field
 - (d) experiences a force parallel to the field
- 26. An *N* turn coil of cross-section area *A* is placed in a uniform magnetic field with its plane parallel to *B*. When current I is passed through it, the torque experienced by it is

(a) <i>BIA</i>	(b) <i>BNA/I</i>
(c) BINA	(d) <i>BIA/N</i>

27. The current sensitivity of a galvanometer is given by the factor

(a)	С	(b) <u>CAN</u>
(4)	BAN	(b) B
(c)	BAC	(d) BA
(C)	n	(u) $\frac{1}{nC}$

28. The sensitivity of a galvanometer can be increased by

- (a) decreasing the area of the coil
- (b) decreasing the number of turns of the coil
- (c) increasing the magnetic field
- (d) using a fine suspension

29. A dead beat galvanometer is one

- (a) which has large sensitivity
- (b) which has small internal resistance
- (c) which has small full scale deflection current
- (d) whose coil comes to rest quickly

30. For accurate measurement of current through the circuit the resistance of the ammeter should be

- (a) large compared to the circuit resistance
- (b) very small compared to the circuit resistance
- (c) of the order of the circuit resistance
- (d) none of these

31. The measure potential difference across a resistance, the voltmeter is always connected in

- (a) series
- (b) parallel
- (c) some times in series and some times in parallel
- (d) none of these
- 32. A galvanometer whose resistance is 15 Ω and which gives full scale deflection when the current through it is 0.005 A has a series resistance equals 985 Ω . The combination forms a voltmeter, which can read up to

(a) 0.075 V	(b) 1 V
(c) 4.925 V	(d) 5V

- 33. A milliammeter reading upto 5 mA has a coil of resistance 90 Ω . A resistor of 810 Ω is connected in series with the coil. This will convert milliammeter into
 - (a) milliammeter reading upto 45 mA
 - (b) milliammeter reading upto 50 mA

- (c) voltmeter reading upto 4.5 V
- (d) voltmeter reading upto 5.0 V

34. A good ammeter is one which

- (a) can measure both AC and DC voltages
- (b) has a linear scale of measurement
- (c) has a very small internal resistance
- (d) has a very large internal resistance
- 35. The coil of a galvanometer is placed in a radial magnetic field so that its plane
 - (a) is always perpendicular to the magnetic field
 - (b) is always parallel to the magnetic field
 - (c) makes some angle with **B**.
 - (d) none of these
- 36. A galvanometer having 40 Ω resistance and 100 mV full scale deflection voltage is provided with a shunt resistance of 0.05 Ω . The maximum current, which this galvanometer can read, is

(a) 1 A	(b) 1.5 A
(c) 2 A	(d) 0.05 A

- 37. When a volt meter is connected in parallel with the two points whose potential difference is to be measured, then the potential difference between those two points will
 - (a) increase slightly
 (b) decrease slightly
 (c) does not change
 (d) cannot be predicted

38. An a.c. voltmeter always measures the

- (a) peak value of a.c. voltage
- (b) average value of a.c. voltage
- (c) root measure value of a.c. voltage
- (d) mean square value of a.c. voltage

39. An avometer is a device, which can measure

- (a) current only
- (b) voltage only
- (c) resistance only
- (d) current, voltage and resistance.

40. The 0 of the ohmmeter scale corresponds to

- (a) 0 of galvanometer scale (b) ∞ of galvanometer scale
- (c) 0 of ammeter scale (d) 0 of voltmeter scale

Key to Test Chapter 14

1	d	21	b
2	а	22	а
3	b	23	d
4	С	24	b
5	С	25	b
6	b	26	С
7	b	27	а
8	а	28	С
9	С	29	d
10	а	30	b
11	b	31	b
12	b	32	d
13	С	33	С
14	d	34	С
15	С	35	b
16	d	36	С
17	С	37	b
18	d	38	С
19	С	39	d
20	а	40	b