1.	A point mass moves along the circumference of a circle of radius <i>R</i> . As it completes 4 rotations, its displacement and distance covered are	
	(a) 0 and $8\pi R$ (c) $8\pi R$ and 2 R	(b) 8πR and 0 (d) none of these
2.	π radians equals (a) 30° (c) 90°	(b) 60° (d) 180°
3.	1 rad equals (a) 53.7° (c) 57.3°	(b) 35.7° (d) 75.3°
4.	The dimensions of angular d (a) [L] (c) [L ²]	isplacement are (b) $[L^{\circ}]$ (d) $[L^{-1}]$
5.	The circumference of a circle	subtends at the centre an angle
	(a) π radians	(b) 2π radians
	(c) $\frac{\pi}{2}$ radians	(d) 4π radians
6.	A flywheel makes 300 rpm. 1	its angular velocity in rad s $^{-1}$ is
	 (a) 10 π (c) 30 π 	(b) 20 π (d) none of these
7.	The dimensions of angular v	elocity are
	(a) [LT] (c) [T]	(b) [LT ⁻¹] (d) [T ⁻¹]
8.	The angular speed of a minu (a) 5.8×10^{-4} (c) 5.2×10^{-3}	te hand in a clock in rad s ⁻¹ is (b) 1.7×10^{-3} (d) 1.0×10^{-1}
9.	The linear speed of a point o 1 m which makes 30 rpm is	n the rim of a wheel of diameter
	(a) $\frac{\pi}{2} m s^{-1}$	(b) $\pi m s^{-1}$

(c) 30 π n	ns^{-1}	(d)	$60 \pi ms^{-1}$
(C) 30π m	ns -	(a)	$0.60 \pi ms$

10. The ratio of the angular speed of the minute hand to the hour hand of a clock is

(a) 1 : 6	(b) 6 : 1
(c) 1 : 12	(d) 12 : 1

11. Which one of the followings is correct?

(a) $\omega = vr$	(b) $V = \frac{1}{\omega}$
(c) $v = r\omega$	(d) $\omega = \frac{r}{v}$

12. All points of a rigid body rotating about a given axis have the same

(a) tangential velocity	(b) angular velocity
(c) tangential acceleration	(d) angular acceleration

13. The relation between tangential and angular acceleration is

(a) $a_T = r\alpha$	(b) $a_T = \frac{\alpha}{r}$
(c) $a_T = \frac{r}{\alpha}$	(d) $a_T = \frac{\alpha}{v}$

14. The centripetal force acting on a body of mass m moving in a circle of radius r with constant angular speed ω is (a) $F_{\rm C} = m\omega r$ (b) $F_{\rm C} = m\omega^2 r$

$(a) \cap C = m \omega$	$(\mathbf{D}) \mathbf{T} \mathbf{C} = \mathbf{I} \mathbf{I} \mathbf{W} \mathbf{T}$
(c) $F_{\rm C} = m \omega r^2$	(d) $F_{\rm C} = m\omega^2 r^2$

15. A satellite circles the Earth with a speed *v* at a distance *r* from the centre of Earth. Increasing the speed twice will make the satellite move in a circle of radius

(a) 2 <i>r</i>	(b) <i>r</i> /4
(c) 4 <i>r</i>	(d) <i>r</i> /2

16. When a stone is whirled in a vertical circle by a string, the tension in the string is maximum at the

(a) centre	(b)top
(c) bottom	(d) neither of these points

17. Moment of inertia has the dimensions (b) $[M|^{2T-2}]$

(a) [MLI]	(b) [ML ² I ⁻²]
(c) [ML ²]	(d) [ML ² T ⁻¹]

18. Rotational analogue of force is

- (a) angular momentum(c) moment of force
- (b) moment of inertia (d) torque

19.	 The moment of inertia of a body depends upon (a) mass of a body and its size (b) its angular momentum (c) mass of a body and its angular speed (d) mass as well as its distribution about the axis of rotation. 	
20.	The angular momentum L is (a) <i>m</i> ω (c) r × F	given by (b) ω × r (d) r × p
21.	Rate of change of angular m (a) force (c) torque	omentum is equal to (b) impulse (d) inertia
22.	In the absence of any external torque, a decrease in the moment of inertia results in an increase in the angular velocity such that	
	(a) $\frac{1}{2}I\omega^2$ = constant	(b) $I\omega$ = constant
	(c) $\frac{I}{\omega}$ = constant	(d) $I\omega^2 = \text{constant}$
23.	If Earth shrinks half of its part of rotation about its axis of (a) twice (c) four times	resent size, its new angular velocity rotation becomes (b) three times (d) six times
24.	If a steel ball of mass <i>m</i> and velocity <i>ω</i> , its rotational kind	l radius <i>r</i> is moving with angular etic energy is
	(a) $\frac{1}{2}m\omega r$	(b) $\frac{1}{2}m\omega^2 r$
	(c) $\frac{1}{2}m\omega r^2$	(d) $\frac{1}{2}m\omega^2 r^2$
25.	The graph shows the variati acting on a wheel with time represents (a) θ (b) α (c) gain in angular momentu (d) gain in angular velocity	on of torque τ The area X um t
26.	The weight of a man in an e	levator descending with an

acceleration of 4.9 ms⁻² will become (a) twice (b) half (c) zero (d) unchanged

27. An astronaut of mass 100 kg is orbiting in a spaceship at an altitude $h = \frac{R}{2}$ (R = radius of Earth). Taking $g = 10 \text{ ms}^{-2}$, his weight inside the spaceship is

(a) 500 N (b) 250 N (c) 125 N (d) 0 N

28. The orbital speed of a satellite is related to its orbital radius *r* by

(a) <i>v</i> ∝ <i>r</i>	(b) $v \propto \frac{1}{\sqrt{r}}$
(c) $v \propto \sqrt{r}$	(d) $v \propto \frac{1}{r}$

29. The frequency of rotation of a spaceship about its own axis to produce artificial gravity like that on Earth is

(a) $f = \frac{1}{2\pi} \sqrt{\frac{R}{g}}$	(b) $f = \frac{1}{2 \pi} \sqrt{\frac{g}{R}}$
(c) $f = 2 \pi \sqrt{\frac{R}{g}}$	(d) $f = 2 \pi \sqrt{\frac{g}{R}}$

30. The rotational kinetic energy of a hoop of mass *m* moving down an inclined plane with velocity *v* will be

(a) $\frac{1}{4}mv^2$	(b) $\frac{1}{2}mv^2$
(c) $\frac{3}{4}mv^2$	(d) $\frac{4}{3}mv^2$

31. The linear velocity of a disc moving down an inclined plane is

(a) \sqrt{gh}	(b) $\sqrt{\frac{4gh}{3}}$
(c) $\sqrt{\frac{2 g h}{3}}$	(d) $\sqrt{\frac{gh}{2}}$

32. The physical quantity which produces angular acceleration in a body is called

(a) angular velocity	(b) momentum
(c) centripetal force	(d) torque

33. The rate of change of angular momentum of a body is called

(a) applied torque	(b) force		
(c) impulse	(d) moment of force		

34. Angular momentum of a body under the central force is

(a) zero	(b) maximum
(c) minimum	(d) constant

35. A bicycle wheel is rotating at a constant angular velocity. Which graph represents the relation between the speed *v* of a point on the wheel and its distance from the centre of rotation?

36. The number of geostationary satellites required for global TV transmission is

(a) 2	(b) 3
(c) 4	(d) 6

37. A geostationary satellite completes one revolution around the Earth in

(a) 6 hr	(b) 12 hr
(c) 18 hr	(d) 24 hr

38. Moment of inertia of a solid sphere of mass *M* and radius *R* about an axis passing through its centre is

(a) $\frac{2}{5}$ <i>MR</i>	(b) $\frac{2}{5}MR^2$
(c) $\frac{4}{5}MR^2$	(d) <i>MR</i> ²

39. A body of mass *m* moves with angular velocity ω in a circle of radius *r* about point O. If moment of inertia of the body about O is *I* and *v* is its linear speed, then its angular momentum about O is

(a) <i>Iv</i>	(b) <i>Iw</i>
(c) <i>mv</i> ² <i>r</i>	(d) <i>mr</i> ω ²

40. Finite angular displacement of a rotating body is taken as

(a) vectors

- (b) scalars
- (c) neither scalars nor vectors (d) both scalars as well as vectors

Key to Test Chapter 5

1	а	21	С
2	d	22	b
3	С	23	С
4	b	24	d
5	b	25	С
6	а	26	b
7	d	27	d
8	b	28	b
9	b	29	b
10	d	30	b
11	С	31	b
12	b	32	d
13	а	33	а
14	b	34	d
15	b	35	а
16	С	36	b
17	С	37	d
18	d	38	b
19	d	39	b
20	d	40	b