
All Physics Formulae Panorama

FrazMallick

Caution:

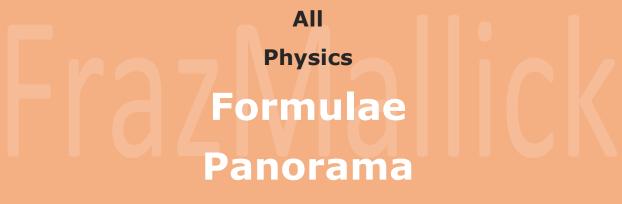
"Copyright© All Rights Reserved"

"All copyrights are Reserved with the Author and the Publisher.

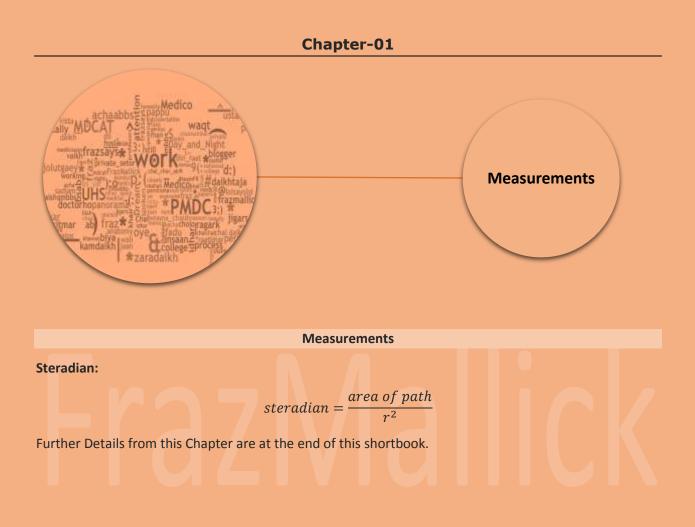
NO ONE IS ALLOWED to Edit, Copy or Modify this ShortBook in any Case."

FrazMallick

About The ShortBook:


- Book Title:
- Pages:
- Edition:
- Format: Copy Only)
- Author:
- Association:
- Courtesy:

All Physics Formulae Panorama 57 2nd Portable Document Format (For This


Fraz Mallick #teamFR MCAT Panorama

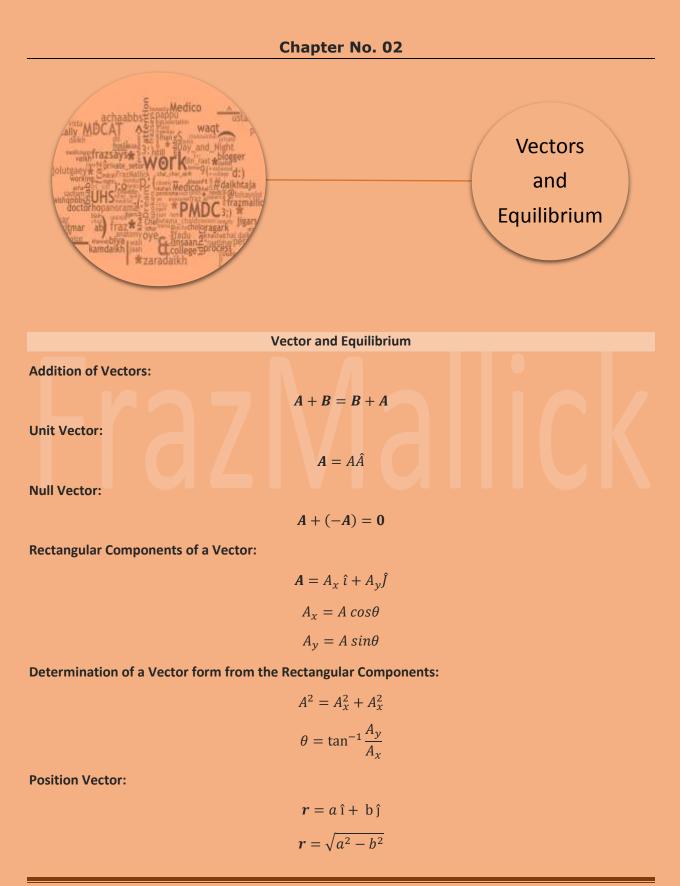

Sr.	Chapter No.	Chapter Name	Page Number
1.	Book-I		
2.	1.	Measurement	06
3.	2.	Vectors and Equilibrium	07
4.	3.	Motion and Force	10
5.	4.	Work and Energy	13
6.	5.		15
7.	6.	Fluid Dynamics	18
8.	7.	Oscillations	19
9.	8.	Waves	21
10.	9.	Physical Optics	24
11.	10.	Optical Instruments	26
12.	11.	Heat and Thermodynamics	28
13.	Book-11		
14.	12.	Electrostatics	33
15.	13.	Current Electricity	36
16.	14.	Electromagnetism	39
17.	15.	Electromagnet Induction	41
18.	16.	Alternate Current	43
19.	17.	Physics of Solids	45
20.	18.	Electronics	47
21.	19.	Dawn of Modern Physics	49
22.	20.	Atomic Spectra	51
23.	21.	Nuclear Physics	53
24.	Important Informatio	n	55

Table of Content

Part-I

$$r = a \hat{i} + b \hat{j} + c \hat{k}$$
$$r = \sqrt{a^2 + b^2 + c^2}$$

Vector Addition by Rectangular Components:

$$R_{x} = A_{x} + B_{x}$$

$$R_{y} = A_{y} + B_{y}$$

$$R = \sqrt{(A_{x} + B_{x})^{2} + (A_{y} + B_{y})^{2}}$$

$$\theta = \tan^{-1}\frac{A_{y} + B_{y}}{A_{x} + B_{x}}$$

$$R = \sqrt{(A_{x} + B_{x} + C_{x} + ..)^{2} + (A_{y} + B_{y} + C_{y} + ...)^{2}}$$

$$\theta = \tan^{-1}\frac{A_{y} + B_{y} + C_{y} + ...}{Z}$$
PRODUCT OF TWO VECTORS
Scalar or Dot Product:

$$\boldsymbol{A} \cdot \boldsymbol{B} = ABcos\theta$$

$\hat{\imath}\cdot\hat{j}=0$	$\hat{\imath}\cdot\hat{\imath}=1$
$\hat{j} \cdot \hat{k} = 0$	$\hat{j} \cdot \hat{j} = 1$
$\hat{k} \cdot \hat{\iota} = 0$	$\hat{k} \cdot \hat{k} = 1$

$$\cos\theta = \frac{(A_x B_x + A_y B_y + A_Z B_Z)}{AB}$$

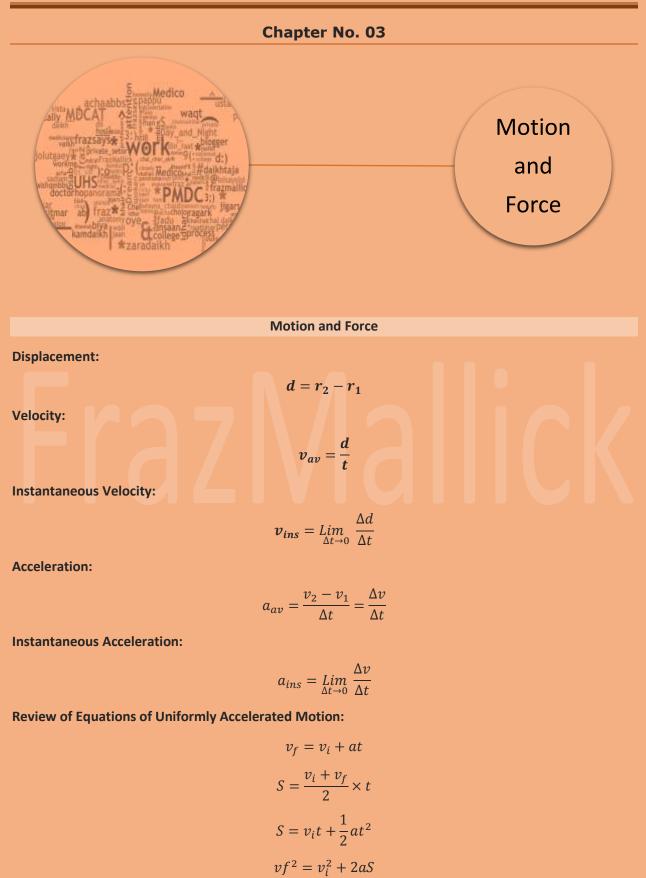
Vector or Cross Product:

$$A \times B = ABsin\theta \ \hat{n}$$
$$A \times B = B \times A$$

Torque:

$$\tau = lF$$
$$\tau = (Fsin\theta)t = rFsin\theta$$
$$\tau = (rFsin\theta) \hat{n}B$$

EQUILIBRIUM OF FORCES


First Condition of Equilibrium:

$$\sum F_x = \mathbf{0}$$
$$\sum F_y = \mathbf{0}$$

Second Condition of Equilibrium:

 $\Sigma \tau =$

FrazMallick

NEWTON LAWS OF MOTION

Newton's Second law of Motion:

$$F = ma$$

Momentum:

p = mv

Momentum and Newton's Second Law of Motion:

$$a = \frac{v_f - v_i}{t}$$
$$a = \frac{F}{m}$$
$$\frac{F}{m} = \frac{v_f - v_i}{t}$$
$$F \times t = mv_f - mv_i$$
$$F = \frac{mv_f - mv_i}{t}$$

Impulse:

 $impulse = \mathbf{F} \times t = m\mathbf{v}_f - m\mathbf{v}_i$

Law of conservation of momentum:

 $(m_1 v_1 + m_2 v_2) = (m_1 v_1' + m_2 v_2')$

Elastic Collision in One Dimension:

$$v'_{1} = \frac{m_{1} - m_{2}}{m_{1} + m_{2}} v_{1} + \frac{2m_{2}}{m_{1} + m_{2}} v_{2}$$
$$v'_{2} = \frac{2m_{1}}{m_{1} + m_{2}} v_{1} + \frac{m_{2} + m_{1}}{m_{1} + m_{2}} v_{2}$$

Force due to water flow:

$$F = -\left(-\frac{m}{v}v\right) = \frac{m}{t}v$$

Momentum and Explosive Forces:

$$Mv' = -mv$$

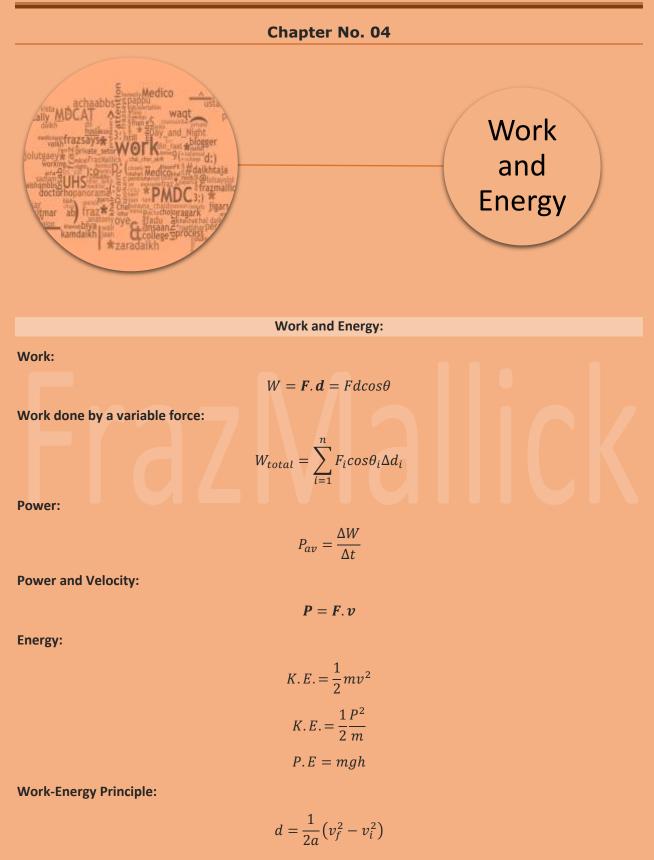
Projectile Motion:

$$x = v_x \times t$$
$$y = \frac{1}{2}gt^2$$

$$v_{fy} = v_i sin\theta - gt$$

 $tan\theta = rac{V_{fy}}{V_{fyx}}$

Height of Projectile:


$$2aS = v_f^2 - v_i^2$$
$$h = \frac{v_i^2 \sin^2 \theta}{2g}$$

Time of flight:

$$t = \frac{2v_i sin\theta}{g}$$

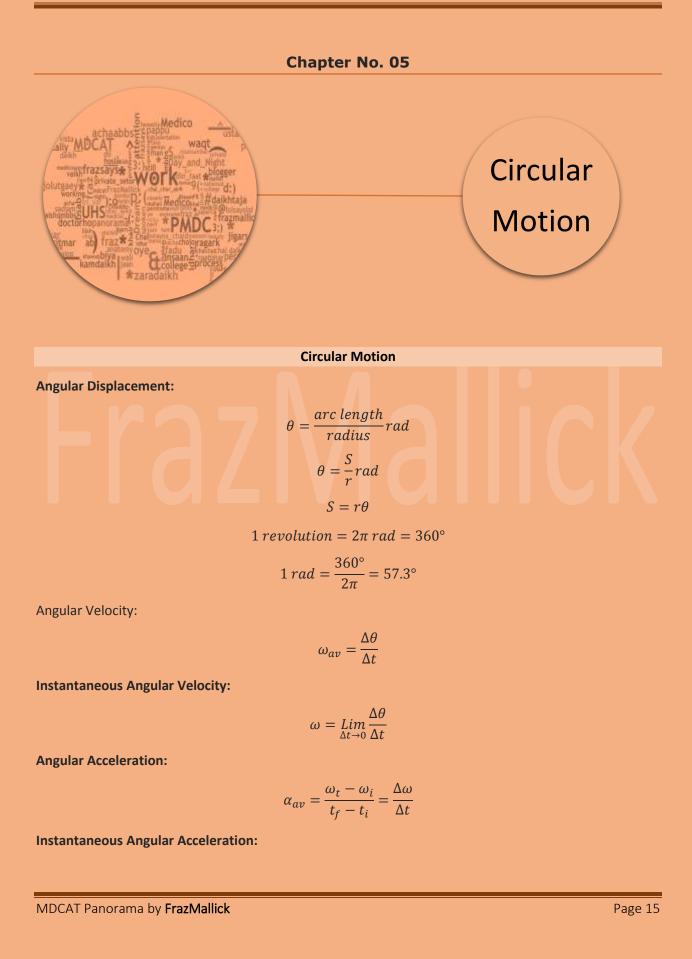
Range of the Projectile:

$$R = \frac{v_i^2}{g} \sin 2\theta$$

$$Fd = \frac{1}{2}mv_f^2 - \frac{1}{2}m_i^2$$

Absolute Potential Energy:

$$U_g = -\frac{GMm}{R}$$


Escape Velocity:

$$V_{esc} = \sqrt{\frac{2GM}{R}}$$

Interconversion of Potential Energy and Kinetic Energy:

$$mg(h_1 - h_2) = \frac{1}{2}m(v_2^2 - v_1^2)$$
$$mgh = \frac{1}{2}mv^2 + fh$$

FrazMallick

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t}$$

Relation between Angular and Linear Velocity:

 $v = r\omega$

Relation between Linear and Angular Acceleration:

$$a_i = r\alpha$$

EQUATIONS OF LINEAR AND ANGULAR MOTION

Linear Motion	Angular Motion
$v_f = v_i + at$	$\omega_f = \omega_i + \alpha t$
$2aS = v_f^2 - v_i^2$	$2\alpha\theta = \omega_f^2 - \omega_i^2$
$S = v_i t + \frac{1}{2}at^2$	$\theta = \omega_i t + \frac{1}{2}\alpha t^2$

Centripetal Force:

$$F_c = mr\omega^2$$

$$a = \frac{v^2}{r}$$
Momentum of Inertia:
$$I = \sum_{i=1}^n m_i r_i^2$$

Angular Momentum:

$$L = I \times p$$
$$L = (\sum_{i=1}^{n} m_i r_i^2) \omega = I\omega$$

Law of Conservation of Momentum:

$$I_1\omega_1 = I_2\omega_2$$

Rotational Kinetic Energy:

$$K.E_{rot} = \frac{1}{2}I\omega^2$$

Real and Apparent weight:

$$F = ma$$

At Rest:

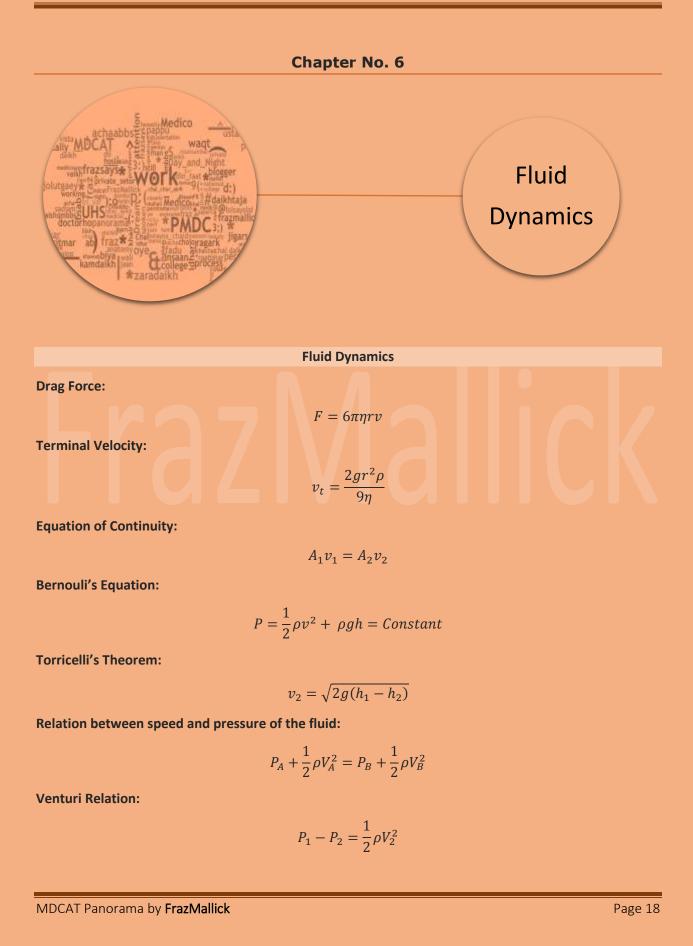
Т	-w = ma
	a = 0
	T - w

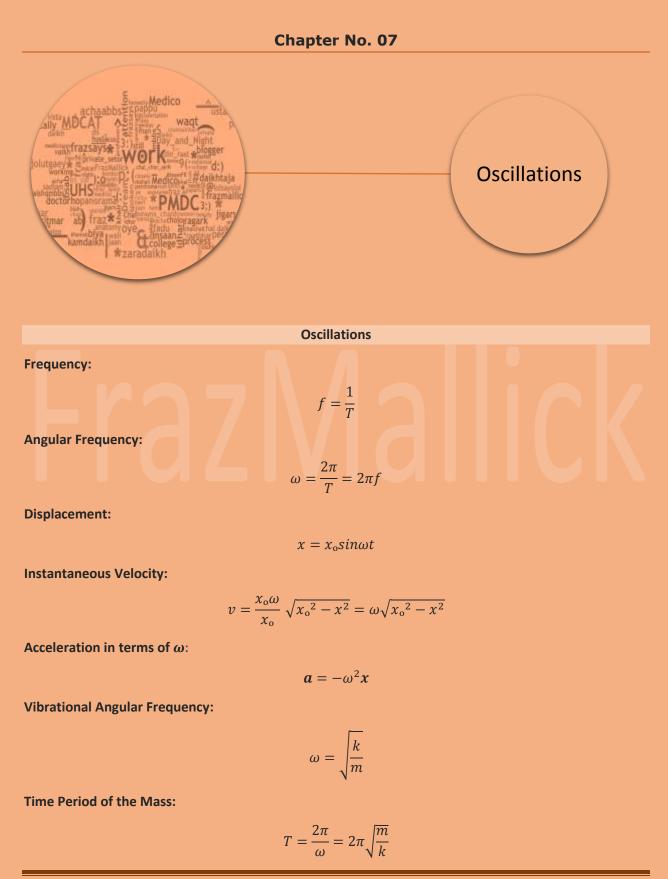
Moving Up with Acceleration:

T = w + ma

Moving downward with an Acceleration:

T = w - ma


Orbital Velocity:


$$v = \sqrt{\frac{GM}{r}}$$

Artificial Gravity:

Radius of Geostationary Orbit:

$$f = \frac{1}{2} \sqrt{\frac{g}{R}}$$
$$r = \left(\frac{GMT^2}{4\pi^2}\right)^{\frac{1}{3}}$$

MDCAT Panorama by FrazMallick

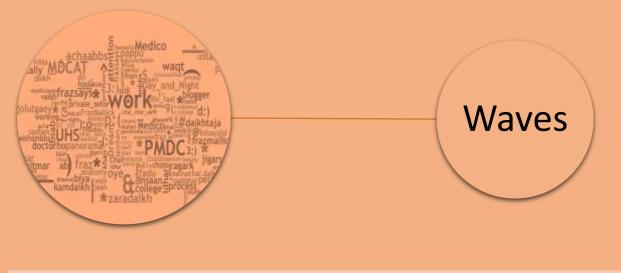
Instantaneous Displacement:

$$x = x_{\rm o} \sin \sqrt{\frac{k}{m}} t$$

Instantaneous Velocity:

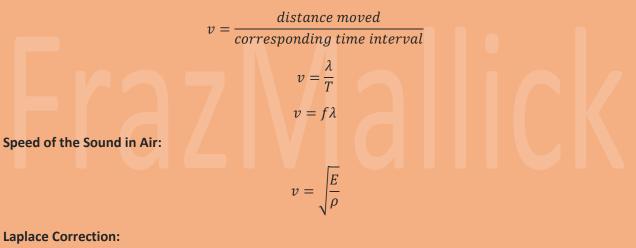
$$v = x_{\rm o} \sqrt{\frac{k}{m} \left(1 - \frac{x^2}{x_{\rm o}^2}\right)}$$

Time Period of a Pendulum:


$$T = 2\pi \sqrt{\frac{l}{g}}$$

Energy Conservation:

 $Total \, Energy = \frac{1}{2}kx_o^2$


Chapter No. 08

All Physics Formulae Panorama

Waves

```
The Speed of the Crest:
```


$$v = \sqrt{\frac{\gamma}{\alpha}}$$

$$\gamma = 1.4$$

$$v = \sqrt{1.4} \times 280 m s^{-1} = 333 m s^{-1}$$

INTERFERENCE

Conditions for Constructive Interference:

$$\Delta S = n\lambda$$

Conditions for Destructive Interference:

$$\Delta S = (2n+1) \ \frac{\lambda}{2}$$

STATIONARY WAVES

Speed v of the waves in the string:

$$v = \sqrt{\frac{F}{m}}$$
$$f_1 = \frac{v}{\lambda_1} = \frac{v}{2l}$$
$$f_1 = \frac{1}{2}\sqrt{\frac{F}{m}}$$

Frequency of Stationary Waves having n loops:

$$f_n = nf_1$$

Wavelength of Stationary Waves having n loops:

$$\lambda_n = \frac{2}{n}l$$

STATIONARY WAVES IN AIR COLUMN

When pipe is open at both ends:

$$\lambda_n = \frac{2l}{n}$$
$$f_n = \frac{v}{\lambda_n} = \frac{nv}{2l}$$
$$f_n = nf_1$$

DOPPLER'S EFFECT

If the Observer moves towards the Stationary Source:

$$f_A = f\left(\frac{v+u_{\rm o}}{v}\right)$$

If the Observer moves away from the Stationary Source:

$$f_B = f\left(\frac{v - u_o}{v}\right)$$

If the Source moves towards the Observer:

$$f_c = \frac{v}{\lambda_c} = \left(\frac{v}{v - u_s}\right) f$$

And If the Source moves away from the Observer:

$$f_D = \frac{v}{\lambda_D} = \left(\frac{v}{v+u_s}\right)f$$

FrazMallick

Chapter No. 09

All Physics Formulae Panorama

Physical Optics

YOUNG'S DOUBLE SLIT EXPERIMENT

 $dsin\theta = m\lambda$

Path Difference for bright fringe:

Path Difference for dark fringe:

 $dsin\theta = \left(m + \frac{1}{2}\right)\lambda$

Bright Fringe Position:

 $y = m \frac{\lambda L}{d}$

Position of Dark Fringe:

$$y_{m+1} = \left(m + \frac{1}{2}\right) \frac{\lambda L}{d}$$

DIFFRACTION DUE TO A NARROW SLIT

Equation for the first minimum:

$$dsin\theta = \lambda$$

 $dsin\theta = m\lambda$

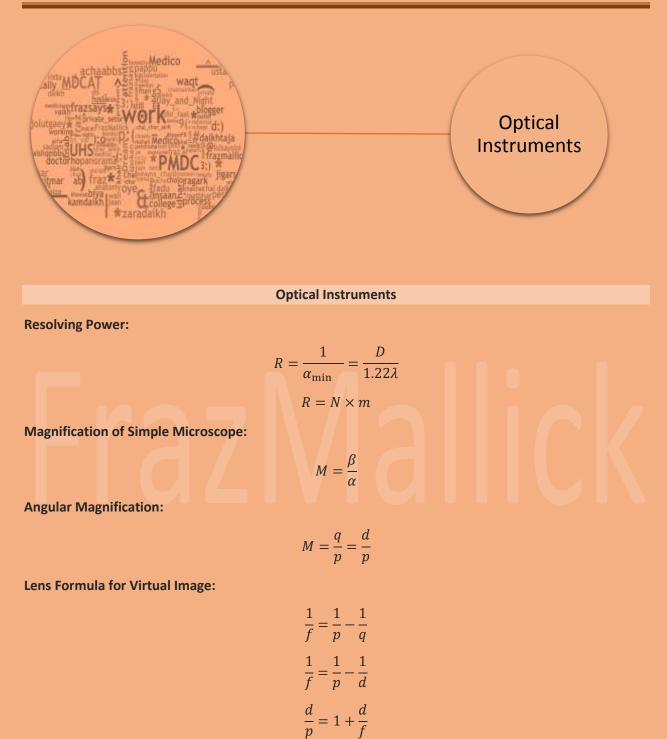
where, m = +(1, 2, 3,)

Diffraction Grating:

$$ab = dsin\theta$$

 $dsin\theta = \lambda$ $dsin\theta = n\lambda$

where, n=+(1, 2, 3, ...)


Diffraction of X-rays by Crystals:

 $2dsin\theta = n\lambda$

FrazMallick

Chapter No. 10

All Physics Formulae Panorama

 $M = \frac{d}{p} = 1 + \frac{d}{f}$

COMPOUND MIRCOSCOPE:

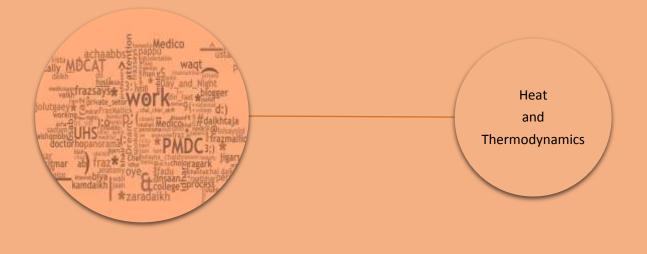
Magnification:

$$M = \frac{q}{p} \left(1 + \frac{d}{f_e} \right)$$

ASTRONOMICAL TELESCOPE:

Magnification:

$$M = \frac{f_o}{f_e}$$


Snell's Law:

$$n_1 \sin\theta_1 = n_2 \sin\theta_2$$
$$\sin\theta_c = \frac{n_2}{n_1}$$

FrazMallick

Chapter No. 11

All Physics Formulae Panorama

Heat and Thermodynamics

Pascal's Law:

$$P_x = P_y = P_z = \frac{\rho}{3} < v^2 >$$

$$P = \frac{1}{3}\rho < v^2 >$$

$$P = \frac{2}{3}N_o < \frac{1}{2}mv^2 >$$

$$P \propto < K.E. >$$

General Gas Equation:

PV = nRT

Boltzmann Constant:

$$k = \frac{R}{N_A}$$
$$k = 1.38 \times 10^{-23} J K^{-1}$$

Boyle's Law:

$$PV = \frac{2}{3}N < \frac{1}{2}mv^2 >$$
$$P \propto < \frac{1}{V} >$$

Charles's Law:

$$V = \frac{2}{3}\frac{N}{P} < \frac{1}{2}mv^2 >$$

Temperature Interpretation:

$$T = \frac{2}{3k} < \frac{1}{2}mv^2 >$$

Mean Square Velocity:

$$\langle v^2 \rangle = \frac{3kT}{m}$$
$$\langle v \rangle = \sqrt{\frac{3kT}{m}}$$

Work and Heat:

$$W = P\Delta V$$

First Law of Thermodynamics:

$$Q = \Delta U + W$$

 $P_1V_1 = P_2V_2$

 $W = -\Delta U$

 $PV^{\gamma} = Constant$

Isothermal Process:

Adiabatic Process:

Molar Specific Heat at Constant Volume:

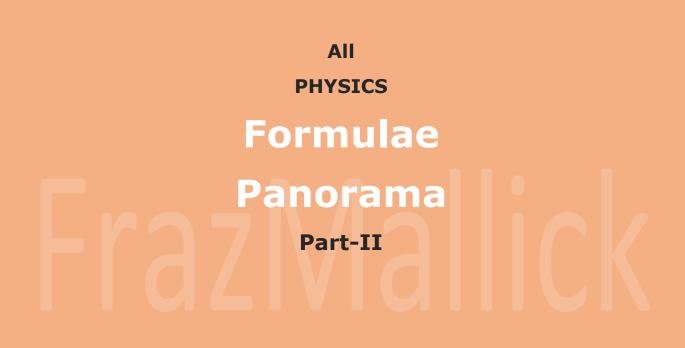
$$C_V \Delta T = \Delta U + 0$$
$$\Delta U = C_v \Delta T$$

Molar Specific Heat at Constant Pressure:

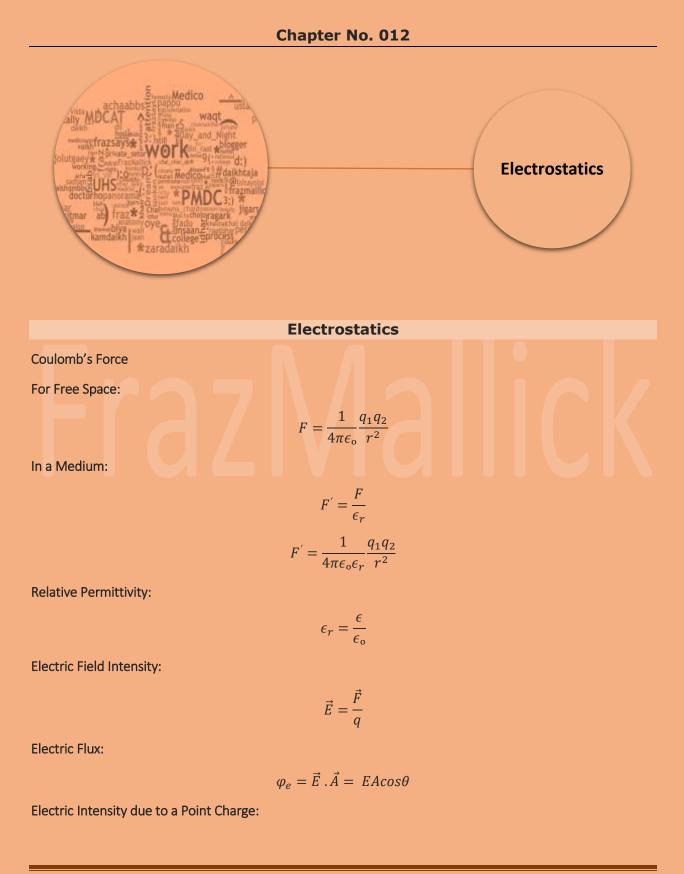
$$Q_p = C_p \Delta T$$

Universal Gas Law Constant:

$$C_p - C_v = R$$


Efficiency of an Engine:

$$\eta = \frac{Output (Work)}{Input (Energy)}$$
$$\eta = 1 - \frac{Q_2}{Q_1}$$
$$\eta = 1 - \frac{T_2}{T_1}$$


Entropy:

$$\Delta S = \frac{\Delta Q}{T}$$

FrazMallick

FrazMallick

$$E = \frac{1}{4\pi\epsilon} \frac{q}{r^2}$$

Electric Flux through Closed Surface (Gauss's Law):

$$\varphi_e = \frac{1}{\epsilon_{\rm o}} Q$$

Electric Intensity of Field inside a Hollow Charged Sphere:

$$\vec{E}=0$$

Electric Intensity due to infinite sheet of charge:

$$\vec{E} = \frac{\sigma}{2\epsilon_{\rm o}} \,\hat{r}$$

Surface charge density:

$$\sigma = \frac{Q}{A}$$

Electric intensity between two oppositely charged parallel plates:

$$\vec{E} = \frac{\sigma}{\epsilon_{\rm o}} \, \hat{r}$$

Electric Potential Energy:

$$\Delta V = V_B - V_A = \frac{W_{AB}}{q_o} = \frac{\Delta U}{q_o}$$

Volt:

$$1Volt = \frac{1 \text{ joule}}{1 \text{ coulomb}}$$

Electric Potential:

$$V = \frac{W}{q}$$

Potential Gradient:

$$E = \frac{\Delta V}{\Delta r}$$

Electric Potential at a point due to a point charge:

$$V_r = \frac{1}{4\pi\epsilon_o} \, \frac{q}{r}$$

Charge on an electron by Milikan's Method:

$$q = \frac{mgd}{V}$$

MDCAT Panorama by FrazMallick

$$r = \frac{\sqrt{9\eta V_t}}{2\rho g}$$

Capacitor

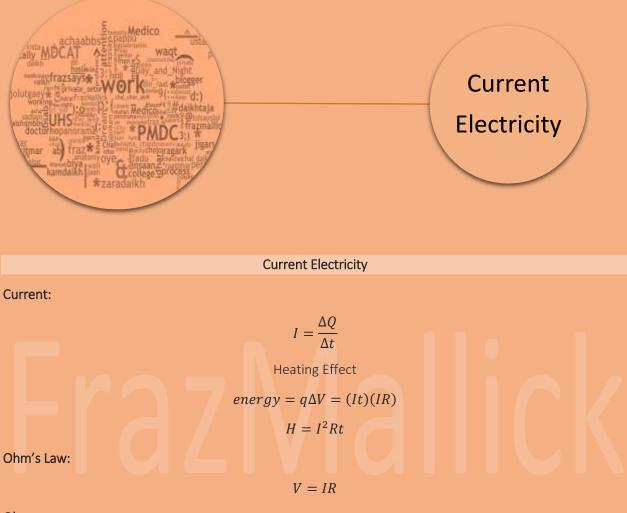
Q = CVCapacitance

$$C_{vac} = \frac{A\epsilon_{o}}{d}$$
$$C_{med} = \frac{A\epsilon_{o}\epsilon_{r}}{d}$$
$$\frac{C_{med}}{C_{vac}} = \epsilon_{r}$$

Energy Stored in a Capacitor:

$$Energy = \frac{1}{2}CV^{2}$$

$$U = \frac{1}{2}(\epsilon_{o}\epsilon_{r}E^{2})(Ad)$$


$$Energy \ density = \frac{Energy}{Volume}$$

Energy Stored in an Electric Field:

Energy Density:

Chapter No. 13

All Physics Formulae Panorama

Ohm:

 $1 ohm = \frac{1 volt}{1 ampere}$

Review of series and parallel combinations of resistors:

$$R_1 = R_1 + R_2 + R_3 + \dots$$
$$\frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

Resistance

$$R = \rho \frac{L}{A}$$

Temperature coefficient of Resistance:

MDCAT Panorama by FrazMallick

$$\alpha = \frac{R_t - R_o}{R_o t}$$

Temperature coefficient of Resistivity:

$$\alpha = \frac{\rho_t - \rho_o}{\rho_o t}$$

Electrical Power:

$$Electrical \ power = \frac{Energy \ supplied}{Time \ taken}$$

Power dissipation in resistors:

Power dissipated:

Power dissipated =
$$I \times V$$

$$P = \frac{V^2}{R}$$

 $P = I^2 R$

Electromotive force (emf):

$$E = \frac{\Delta W}{\Delta Q}$$

Terminal potential difference:

Maximum power output:

$$P_{outmax} = \frac{E^2}{4r}$$

V = E - Ir

Kirchhoff's first rule:

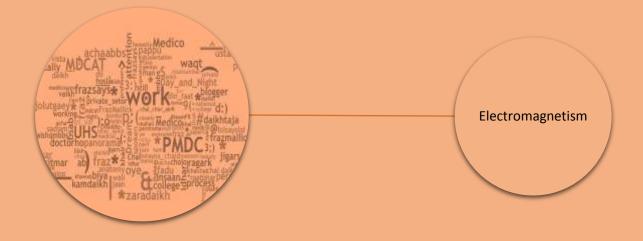
$$\Sigma I = 0$$

Kirchhoff's second rule:

$$\sum V = 0$$

Wheatstone bridge:

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$


To find the unknown resistance:

$$X = R_3 \times \frac{R_2}{R_1}$$

Potentiometer:

$$Ex = E \times \frac{I}{L}$$
$$\frac{E_1}{E_2} = \frac{I_1}{I_2}$$

FrazMallick

Electromagnetism

 $F = ILBsin\alpha$

 $\overline{F} = I(\overline{L} \times \overline{B})$

 $\phi_B = \overline{B}.\overline{A} = BAcos\theta$

Force on a current carrying conductor in a uniform magnetic field:

Magnetic flux:

Magnetic induction:

 $B = \frac{F}{ILsin\alpha}$

Ampere's Law:

$$\sum_{r=1}^{N} (\bar{B}.\Delta \bar{L})_r = \mu_0 I$$

Field due to a current carrying solenoid:

$$B = \mu_{\rm o} n I$$

Force on a moving charge in a magnetic field:

$$\bar{F} = q(\bar{V} \times \bar{B})$$

Lorentz force:

$$F = q\bar{E} + q(\bar{V} \times \bar{B})$$

e/m of an electron:

$$\frac{e}{m} = \frac{v}{Br}$$

$$\frac{e}{m} = \frac{2V_{\rm o}}{B^2 r^2}$$

Torque on a current carrying coil:

$$\tau = NIABcos \alpha$$

Shunt Resistance:

$$R_s = \frac{I_g R_g}{I - I_g}$$

High Resistance

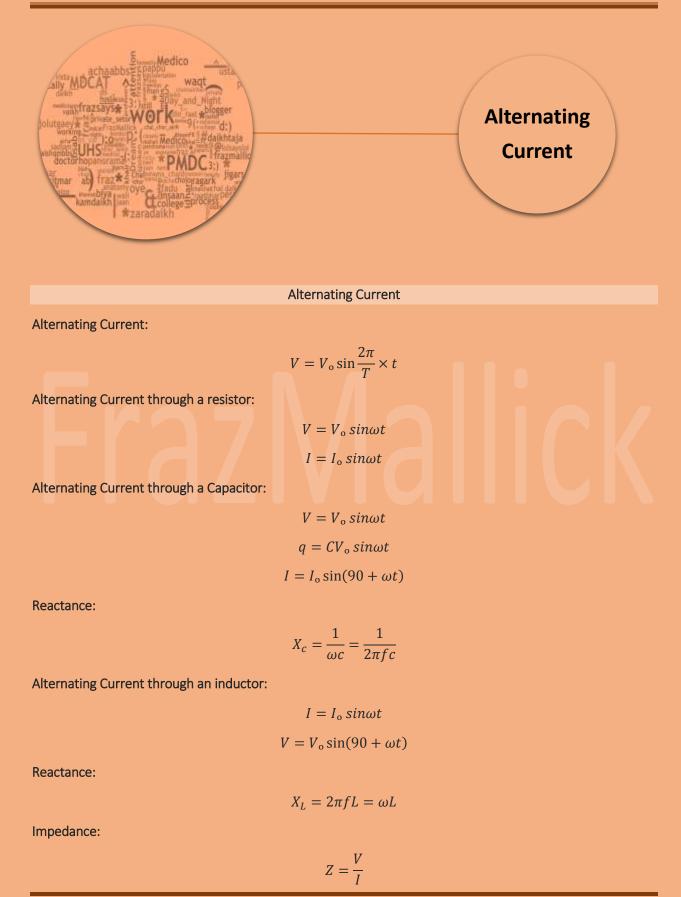
$$R_h = \frac{V}{I_g} - R_g$$

FrazMallick

Achaabbus prophy and used achaabbus prophy and used any MCCAL Assessment wart are really reasons and any and wint are really reasons any and any and wint are any of the set of the set of the set of the set of the set and the set of the		Electromagnetic Induction
E	lectromagnetic Induction	
Motional emf:		
	$\varepsilon = -vBLsin\theta$	
Faraday's Law: Mutual Induction:	$\varepsilon = -N \frac{\Delta \varphi}{\Delta t}$ $\varepsilon_s = -M \frac{\Delta I_p}{\Delta t}$	
Self Induction:		
	$arepsilon_L = -L rac{\Delta I}{\Delta t}$	
Energy stored in an inductor:		
	$U_m = \frac{1}{2}LI^2$	
Energy in terms of magnetic field (\vec{B}) :		
	$U_m = \frac{1}{2} \frac{B^2}{\mu_{\rm o}} \ (AI)$	
Energy density:		
	$U_m = \frac{1}{2} \frac{B^2}{\mu_o}$	
Alternating current generator:		
	$\varepsilon = N\omega ABSin(\omega t)$	

$\varepsilon_{\rm o} = N\omega AB$
$\varepsilon = \varepsilon_{o}Sin(\omega t)$
$I = I_o Sin(\omega t)$
$\varepsilon = \varepsilon_{\rm o} Sin(2\pi ft)$
$I = I_o Sin(2\pi ft)$

Back emf effect in motors:


 $V = \varepsilon + IR$

Transformer:

$$\frac{V_s}{V_p} = \frac{N_s}{N_p}$$
$$\frac{V_s}{V_p} = \frac{I_p}{I_s}$$

Efficiency of a transformer:

$$E = \frac{Output \ power}{Input \ power} \times 100$$

R-C Series Circuit:

$$V = \sqrt{V_R^2 + V_c^2}$$
$$Z = \sqrt{R^2 + \left(\frac{1}{\omega c}\right)^2}$$
$$tan\theta = \frac{X_c}{R}$$
$$\theta = \tan^{-1}\left(\frac{Xc}{R}\right) = \tan^{-1}\left(\frac{1}{\omega CR}\right)$$

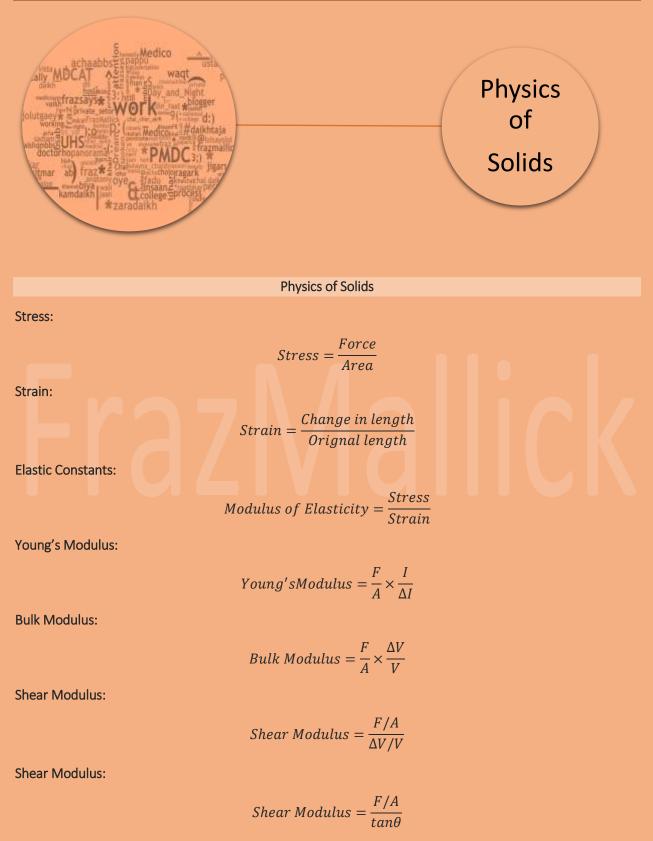
R-L Series Ci

R-L Series Circuit:

$$Z = \sqrt{R^2 + (\omega L)^2}$$

$$tan\theta = \frac{X_L}{R}$$

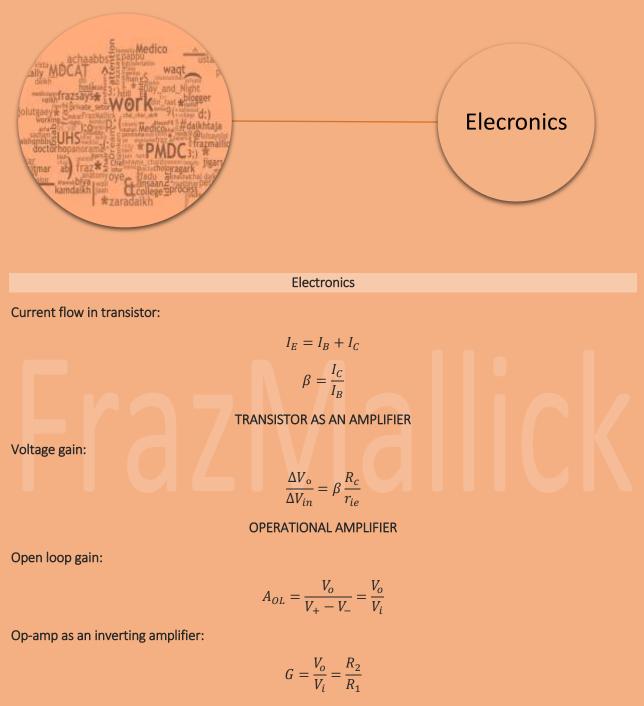
$$\theta = tan^{-1} \left(\frac{X_L}{R}\right) = tan^{-1} \left(\frac{\omega L}{R}\right)$$
Power in AC circuits:


$$P = I \times Vcos\theta$$
Series resonance circuit:

$$X_L = X_C$$

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

Electromagnetic waves:


 $C = f\lambda$

Strain energy in deformation materials:

Work done
$$=$$
 $\frac{1}{2}l_1 \times F_1$
Work done $=$ $\frac{1}{2}\left[\frac{EA \times l_1^2}{L}\right]$

FrazMallick

Op-amp as non-inverting amplifier:

$$Gain = G = \frac{V_o}{V_i} = 1 + \frac{R_2}{R_1}$$

OR gate:

X = A + B

AND Gate:

NOT Gate:

NOR Gate:

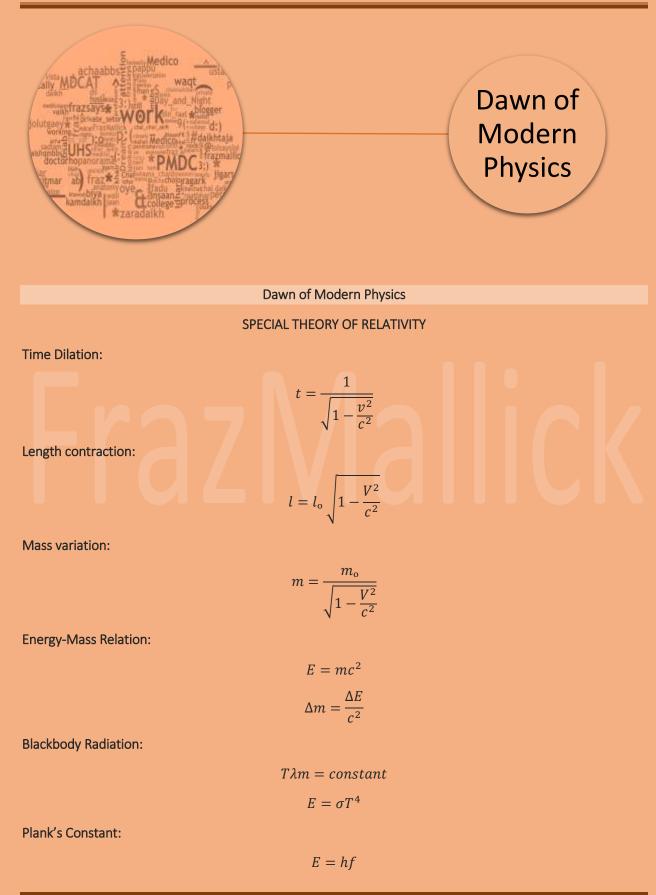
NAND Gate:

Exclusive OR Gate (XOR):

 $X = \overline{AB} + \overline{AB}$

 $X = \overline{A \cdot \overline{B} + \overline{A} \cdot B}$

 $X = A \cdot B$


 $X = \overline{A}$

 $X = \overline{A + B}$

 $X = \overline{A \cdot B}$

Exclusive NOR Gate (XNOR):

FrazMalick

by FrazMallick

$$E = \frac{hc}{\lambda}$$
$$P = \frac{hf}{c}$$

Photoelectric Effect:

$$\frac{1}{2}mV_{\max}^2 = V_o e$$

Work Function:

$$\varphi = hf_o$$
$$hf = \varphi + \left(\frac{1}{2}mv^2\right)$$

Compton Effect:

$$\Delta \lambda = \frac{h}{m_o c} (1 - \cos\theta)$$

Pair Production:

$$hf = 2m_o c^2 + (K.E)_{e-} + (K.E)_{e-}$$

 $e^- + e^+ \rightarrow Y + Y$

Annihilation of Matter:

Wave nature f particles:

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$
$$\lambda = \frac{h}{\sqrt{2mVe}}$$

Uncertainty Principle:

$$\Delta x. \, \Delta P \approx \lambda \left(\frac{h}{\lambda}\right) \approx h$$
$$\Delta E. \, \Delta t \approx h$$

Chapter No. 19

Contendent of the second of th		Atomic Spectra
	Atomic Spectra	
Lyman Series:		
Balmer Series: Paschen Series: Brackett Series:	$\frac{1}{\lambda} = R_H \left(\frac{1}{1^2} - \frac{1}{n^2}\right)$ $\frac{1}{\lambda} = R_H \left(\frac{1}{2^2} - \frac{1}{n^2}\right)$ $\frac{1}{\lambda} = R_H \left(\frac{1}{3^2} - \frac{1}{n^2}\right)$ $\frac{1}{\lambda} = R_H \left(\frac{1}{4^2} - \frac{1}{n^2}\right)$	
Pfund Series:	$\lambda = (4^2 n^2)$	
Second Postulate of Bohr's Theory:	$\frac{1}{\lambda} = R_H \left(\frac{1}{5^2} - \frac{1}{n^2} \right)$	
	$mv_n r_n = n \left(\frac{h}{2\pi}\right)$	
Third Postulate of Bohr's Theory:		
X-Rays:	$hf = E_n - E_p$	
	$hf_{k\alpha} = E_L - E_K$	

Quantized Radii:

$$r_{n} = \frac{n^{2}h^{2}}{4\pi me^{2}k}$$

$$r_{1} = \frac{h^{2}}{4\pi me^{2}k}$$

$$r_{n} = n^{2}r_{1}$$

$$r_{n} = r_{1}, 4r_{1}, 9r_{1}, 16r_{1}, \dots$$

 $hf_{k\beta} = E_M - E_K$

Quantized Velocity:

$$v_n = \frac{2\pi k e^2}{nh}$$

Quantized Energies:

$$E_{n} = \frac{1}{n^{2}} \left(\frac{2\pi^{2}mk^{2}e^{4}}{h^{2}} \right)$$

$$E_{o} = \left(\frac{2\pi^{2}mk^{2}e^{4}}{h^{2}} \right)$$

$$E_{n} = -\frac{E_{o}}{n^{2}}$$

$$E_{n} = -\frac{13.6}{n^{2}}eV \text{ for } n = 1,2,3,4,5,6,...$$

Hydrogen Emission Spectrum:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{\rho} - \frac{1}{n^2} \right)$$

Chapter No.21:

Nuclear Physics

Mass Spectrograph:

$$v = \sqrt{\frac{2Ve}{m}}$$
$$\frac{Ber}{v} = m$$
$$m = \left(\frac{er^2}{2V}\right)B^2$$

Mass defect and binding energy:

$$\Delta m = Zm_p + (A - Z)m_n - m_{nucleus}$$
$$B.E. = (\Delta m)c^2$$
$$B.E. = \frac{Zm_\rho + (A - Z)m_n - m_{nucleus}}{A}$$

Half Life of a radioactive element:

$$\lambda = -\frac{\frac{\Delta N}{N}}{\Delta t}$$
$$N = N_o e^{-\lambda t}$$
$$N = \frac{1}{2^n} N_o$$
$$0..693 = \lambda T_{12}$$

Absorbed dose:

$1 Gy = 1 Jkg^{-1}$
1 rad = 0.01 Gy

Equivalent dose:

 $D_e = D \times RBE$ $1 Sv = 1 Gy \times RBE$ 1 rem = 0.01 Sv

FrazMallick

Basic Units		
Physical Quantity	Unit	Symbol
Force	newton	N
Work	joule	J
Power	watt	W
Pressure	pascal	Ра
Electric charge	coulomb	С

Quantity		Base unit	
Focal length	m	m	
Displacement	x	m	
Force	N	Kgms ⁻²	
Velocity	V	ms ⁻¹	
Acceleration	a	ms ⁻²	
Angular Velocity	ω	s ⁻¹	
		Units:	
		radian	
Angular Displacement	θ	degrees	
		revolution	
		But still, it's Dimensionless	
Angular Acceleration	α	s ⁻²	
Torque	τ	Kgm ² s ⁻²	
Energy	J	Kgm ² s ⁻²	
Work	$W = F \times d$		
K.E	$\frac{1}{2}mv^2$	kgm^2s^{-2}	
P.E	$\frac{\frac{1}{2}mv^2}{\frac{1}{2}mgh}$	kgm^2s^{-2}	
	Modulus of Elasiticiy		
Modulus of Elasticity	Stress Strain	Dimensionless	
Elastic Modulus	$E = \frac{F}{A}$	$kgm^{-1}s^{-2}$	
Young's Modulus	Y		
Bulk Modulus	K		
Shear Modulus	G		
Stress	$\frac{F}{A}$	$\frac{kgms^{-2}}{m^2}$	
Strain	$\frac{\hat{\Delta l}}{l}$	Dimensionless	
Linear Momentum	P, P = mv	mv	
Molar specific heat		$IK^{-1}mol^{-1}$	
		jii not	

Quantity	Symbol	Being Derived From	Final Equation
Permittivity	\mathcal{E}_{0}	$F = \frac{1}{4\pi\varepsilon_o} \left(\frac{q_1 q_2}{r^2}\right)$	$\varepsilon_o = \frac{q_1 q_2}{F \times r}$
Gravitational Constant	G	$F = G \frac{m_1 m_2}{r^2}$	
Spring Constant	k	$F \propto x$	$F \propto x$ $F = kx$ $k = \frac{F}{x}$
Plank's Constant	h	E = hf	$E = hf$ $h = \frac{E}{f}$

Quantities having same Base Units or dimensions		
Heat	kam^2s^{-2}	
Energy	kgm^2s^{-2}	
K.E	$kgm^{2}s^{-2}$ $kgm^{2}s^{-2}$ $kgm^{2}s^{-2}$ $kgm^{2}s^{-2}$ $kgm^{2}s^{-2}$	
P.E	kgm^2s^{-2}	
Work	kgm^2s^{-2}	
Decay Constant	s ⁻¹	
Frequency	s ⁻¹	
Ang. Velocity	s ⁻¹	
Boltzmann constant		
Entropy		
Time	S	
	S	
1		
\overline{f}	S	
1	S	
<u> </u>	3	
RC	S	
$\frac{L}{R}$	S	
<u>R</u>		
l		
\sqrt{g}	S	
N		
$\sqrt{\frac{m}{k}}$	S	
$\left \frac{x}{g} \right $	S	
\sqrt{g}	3	

Relative Biological Effectiveness	Dimensionless
Angular Displacement	Dimensionless
Strain	Dimensionless

Those who **can't afford** any of Publications from us, can get a CARBON COPY Free of Cost. Simply mail us at <u>mdcatpanorama@gmail.com</u>

Caution:

We tried our best to make the shortbook error free but as err is to man, we are humbly sorry if any error or mistyping is detected. You can mail us at <u>frazblogs@gmail.com</u> for the rectification or suggestion.

Disclaimer: Copyright© All rights Reserved.