TEST 7 PHYSICS

ADMISSIONS OPEN MDCAT-ECAT 2020

SOLVE AND DISCUSS WITH Prof. H. SIDDIQUE WHATSAPP 0300-4332012

THE BEST INSTITUTE FOR ENTRY TEST PREPARATION

Physics (Circular Motion, Oscillations Waves) TEST NO 7						
Q.1	Energy is not carried by A) Longitudinal progressive waves B) Transverse progressive waves	C) Electromagnetic waves D) Stationary waves				
Q.2	For an observer standing on a railway platfor locomotive heard will be A)First lower and then higher than the actual pitch B)First higher and then lower than the actual pitch	m; the pitch of the whistle of a receding C) Higher than the actual pitch D) Lower than the actual pitch				
Q.3	In which case increase in wavelength causes an apparent decrease in the frequency of sound waves for the listener A) When listener is moving ing towards stationary sound source B) When listener is moving away from stationary sound source C) When sound source is moving towards stationary listener D) When sound source is moving away from stationary listener					
Q.4	In stationary wave the distance between antinodes is equal to	two successive nodes or two successive				
	A) λ B) $\frac{\lambda}{3}$	C) $\frac{\lambda}{2}$ D) $\frac{\lambda}{4}$				
Q.5	If a train is approaching a station at 72 km then in one second; for a listener sitting on t amount. (Speed of sound = 340 ms^{-1})	1^{-1} sounding a whistle of frequency 1000 Hz, he platform the waves are compressed by an				
Q.6	A tube closed at one end and containing air, p of frequency 512 Hz. If the tube is open at bo be excited is (in Hz)	oroduces, when excited, the fundamental note oth ends. The fundamental frequency that can				
Q.7	A) 1024 B) 256 A simple pendulum performs simple harmonic and time period T. The speed of the pendulun	c) 512 D) 128 c motion about X = 0 with an amplitude A n at $X = \frac{A}{2}$ will be:				
	A) $\frac{\pi A \sqrt{3}}{\pi}$ B) $\frac{\pi A}{\pi}$	C) $\frac{\pi A\sqrt{3}}{2\pi}$ D) $\frac{3\pi^2 A}{2\pi}$				
Q.8	A body is executing simple harmonic motion velocity of the body at 20 mm displacement, A) 40 mm/s B) 60 mm/s	with an angular frequency 2rad/s. the when the amplitude of motion is 60 mm, is C) 113 mm/s D) 120 mm/s				
Q.9	A simple harmonic oscillator has a period of 0 magnitude of the velocity in m sec ⁻¹ at the ce A) 20π B) 100	0.01 sec and an amplitude of 0.2 m. the ntre of oscillation is: C) 40π D) 100π				
Q.10	The distance between two points on a periodic wave is 0.2 m. Find the phase difference between these two points, if the wavelength of the wave is 1.2 m					
	A) $\frac{\pi}{2}$ B) $\frac{\pi}{3}$ C)	$\frac{\pi}{6}$ D) $\frac{\pi}{2}$				
Q.11	The apparent frequency of the whistle of an engine passes a stationary observer. If the vert of the engine is (A) 20 m s^{-1} (C)	engine changes in the ratio of 6 : 5 as the elocity of sound is 330 ms ⁻¹ , then the velocity 22 m s^{-1}				
Q.12	A) Are transverseC)B) Travel with same speed in all mediaD)	Iectromagnetic waves Travel with the speed of light Are produced by accelerating charges				
Q.13	 A body is moving in a circular path with a context A) A constant velocity B) A constant acceleration C) An acceleration of constant magnitude D) An acceleration which varies with time 	stant speed. It has				
Q.14	 A car moves on a circular road. It describes equal angles about the centre in equal intervals of time. Which of the following statement about the velocity of the car is true? A) Magnitude of velocity is not constant B) Both magnitude and direction of velocity change C) Velocity is directed towards the centre of the circle D) Magnitude of velocity is constant but direction changes 					
Q.15	A body of mass 5 kg is moving in a circle of ra / sec. The centripetal force is	adius 1m with an angular velocity of 2 radian				
		C) 30 N D) 40 N				

THE BEST INSTITUTE FOR ENTRY TEST PREPARATION

	Physic	s (Circular Motion, Os TEST NO 7	scillations Waves)		
Q.16	Two particle s are $y_1 = 10sin\left(\omega t + \frac{\pi T}{4}\right)$ A) 1 : 1	e executing S.H.M. the equat $y_2 = 25 sin \left(\frac{\sqrt{3}\pi T}{4}\right)$. what is the B) 1 : 2	ion of their motion are ratio of their amplitud C) 2 : 5	es? D) None of these		
Q.17	A body is whirled radius. What is its	d in a horizontal circle of is linear velocity at any point	radius 20 cm. It has a on circular path	angular velocity of :		
	A) 10 m/s	B) 2 m/s	C) 20 m/s	D) $\sqrt{2} m/s$		
Q.18	In uniform circular motion, the velocity vector and acceleration vector are:A) Perpendicular to each otherC) Opposite directionB) Same directionD) Not related to each other					
Q.19	The periodic time of a body executing simple harmonic motion is 3 sec. after how much interval from time $t = 0$, its displacement will be half of its amplitude A) $\frac{1}{2}$ sec					
Q.20	A system exhibiting S.H.M. must possess:C) Elasticity, intertia and an external forA) intertia onlyC) Elasticity onlyB) Elasticity as well as inertiaD) Elasticity only					
Q.21	An object is moving in a circle of radius 100 m with a constant speed of 31.4 m/s. What i its average speed for one complete revolution.					
	A) Zero	B) 31.4 m/s	C) 3.14 m/s	D) $\sqrt{2} \times 31.4 \ m/s$		
Q.22	A body moves wit	h constant angular velocity	on a circle. Magnitude	of angular		
	acceleration A) variable	B) Constant	C) Zero	D) None of above		
Q.23	Cream gets separ A) Gravitational for	ated out of milk when it is c ce B) Centripetal force	hurned, it is due to C) Centrifugal force	D) Frictional force		
Q.24	A particle of mass m is executing uniform circular motion on a path of radius r. if p is the magnitude of its linear momentum. The radial force acting on the particle is					
	A) pmr	в) <u>rm</u>	C) $\frac{mp^2}{r}$	D) $\frac{p^2}{rm}$		
Q.25	A particle moves with constant angular velocity in a circle. During the motion its A) Energy is conserved B) Momentum is conserved C) Energy and momentum both are conserved D)None of the above is concerned					
Q.26	The angular velocity of a particle rotating in a circular orbit 100 times per minute isA) 1.66 rad s^{-1} B) 10.47 rad s^{-1} C) 10.47 deg s^{-1} D) 60 deg s^{-1}					
Q.27	A stone of mass 16 kg is attached to a string 144 m long and is whirled in a horizontal circle. The maximum tension the string can stand is 16 N. the maximum velocity of revolution that can be given to the stone without breaking the string is:					
Q.28	A satellite is revolving around the earth in a circular orbit with a uniform speed v. if the gravitational force suddenly disappears, the satellite will: A) Continue to move in the same orbit with speed v B) Move tangentially to the orbit with speed v C) Move away from the earth normally to the orbit D) Fall down on the earth					
Q.29	Two satellites A a respectively. If th	nd B go round a planet P in e speed of A is 3v, that of B B) 6 v	circular orbits having r will be	adii 4r and r		
Q.30	A body of mass <i>m</i> the body has cons	moves in a circular path wi stant.	th uniform angular velo	ocity. The motion of		
Q.31	A) AccelerationB) VelocityC) MomentumD) Kinetic energyTwo identical springs of force constant 'k' are connected in a) series b) in parallel. The combinations support mass 'm' at lower end. The ratio of the period of oscillations mass					
	'm' in series and A) 1:1	Darallel combination is B) 1:2	C) 1:4	D) 2:1		
		-,	-,	-, -:-		

THE BEST INSTITUTE FOR ENTRY TEST PREPARATION

Physics (Circular Motion, Oscillations Waves) TEST NO 7								
Q.32	2 When the potential energy of a particle executing simple harmonic motion is one-fou its maximum value during the oscillation, its displacement from equilibrium in terms amplitude 'a' is							
	A) a/4	B) a/3	C) a/2	D) 2a/3				
Q.33	The time period o A) 1 s	f second pendulum on th B) 2 s	e surface of moon is: C) 3 s	D) 4 s				
Q.34	Two springs A and B such that $\frac{k_A}{k_B} = 2$ are stretched by the same suspended weight. The stretched by the same suspended weight.							
	ratio of extension A) 1 : 2	produced in A to that of B) 2 : 1	B is C) 1 : 4	D) 4 : 1				
Q.35	The angular speed of an engine wheel making 90 revolutions per minute is							
	A) 1.5 π rad/s	B) 3 π rad/s	C) 4.5 π rad/s	D) 6 π rad/s				
Q.36	The angular velocity of second's hand in a watch is							
	A) 0.82 rad/sec	B) 0.105 rad/sec	C) 0.21 rad/sec	D) 0.052 rad/sec				
Q.37	Two particles of equal mass revolving in circular paths of radii r_1 and r_2 respectively the same angular velocity. The ratio of their centripetal force will be							
	A) r ₁ /r ₂	B) r ₂ / r ₁	C) (r ₂ / r ₁) 1/2	D) (r ₂ / r ₁) 2				
Q.38	If a train of waves moving along a rope has a velocity of 100ms ⁻¹ and a wavelength (20m, then the time period is:							
	A) 5 seconds	B) 2000 seconds	C) 0.2 second	D) 666 second				
Q.39	A wave of frequency 1000Hz travels between X and Y. a distance of 600m in 2s. He many wavelengths are there in XY?							
	A) 300	B) 180	C) 3.3	D) 2000				

Q.40 The particles which are in phase in the diagram are

ID

A) A, E

INSTITUTE

D) A, B

\triangleright INSTITUTE Δ UPLOADED DAILY IN GROUP facebook.com/groups/gripinstitute SABZAZAR METRO STATION BOSAN ROAD, MULTAN WWW.GRIPINSTITUTE.COM | 03111 585 786